Universidad de Matanzas Sede: "Camilo Cienfuegos" Facultad de Ciencias Técnicas

PRELIMINARES DE LA GESTIÓN DE MANTENIMIENTO DE LA BASE ALQUILER DE EQUIPOS DE LA UBS EQUIVAR

Trabajo de Diploma en Ingeniería Mecánica

Autor: Lisdeivis Calderón González

Matanzas, 2022

Universidad de Matanzas Sede: "Camilo Cienfuegos" Facultad de Ciencias Técnicas

PRELIMINARES DE LA GESTIÓN DEL MANTENIMIENTO DE LA BASE ALQUILER DE EQUIPOS DE LA UBS EQUIVAR

Trabajo de Diploma en Ingeniería Mecánica

Autor: Lisdeivis Calderón González

Tutor: Ing Msc Emilio Fernández Arena

"Cuando toda va bien, nadie recuerda que existe. Cuando algo va mal, dicen que no existe. Cuando es para gastar, se dice que no es necesario. Pero cuando realmente no existe, todos concuerdan en que debería existir"

DECLARACIÓN DE AUTORIDAD

Por medio de la presente declaro que soy el único autor de este trabajo de diploma y, en calidad de tal, autorizo a la Universidad de Matanzas «Camilo Cienfuegos» a darle el uso que estime más conveniente.

Lisdeivis Calderón González

Ciudad de Matanzas, Cuba, 2022

NOTA DE ACEPTACIÓN

Miembros del Tribunal:		
Presidente	Secretario	Vocal

DEDICATORIA

Dedicado a mi abuela Milagros, el ser de luz que me acompaña en cada paso que doy. A mis padres, Lidis y Raidel forjadores de la persona que soy hoy en la actualidad. A mi sobrina, Liz Angelique, a mi novio Oriel, a todos los que amo y me aman, los de una forma u otra siempre han estado ahí para mí.

AGRADECIMIENTOS

A mis padres, por el amor recibido, por la dedicación y la paciencia con la que día a día se preocupaban por mi avance. Por desear y anhelar siempre lo mejor para mi vida. Por hacer de mí, una mejor persona.

A mi madre Lidis, por estar dispuesta a acompañarme cada larga y agotadora noche de estudio. Por levantarse cada día temprano para acompañarme a la parada, por atender tan bien a mis amigos en cada casa de estudio y preocuparse porque nunca estudiáramos con el estómago vacío.

A mi padre Raidel, por su constante preocupación y no dejar de confiar en mí y crear en mí esa autoconfianza tan necesaria para llegar hasta donde estoy hoy. Por sus constantes exigencias que permitieron que creciera de una manera inimaginable.

A mi novio, Oriel por creer en mi capacidad, por siempre estar cuando lo necesito, por cada uno de sus consejos, por la forma en la que me ayudó a levantarme luego de cada caída e impulsarme a seguir. Por ser parte de cada estudio, de cada esfuerzo y ayudarme con ello siempre.

En general a toda mi familia, que de una forma u otra siempre han estado ahí para apoyarme y también son parte de este triunfo.

A el Msc. Emilio Fernández Arenas, por su excelente trabajo de tutor, por brindarme sus conocimientos y su apoyo. Por su disposición siempre de ayudarme y su constante preocupación para que no quedara en mi la menor duda.

A mis compañeros en general, pero en especial a esos que se convirtieron en más que amigos, en familia, por esos estudios de días enteros, por las pizzas, el dulce, el helado, las papas fritas y la carne, por todas las anécdotas que quedarán para la historia. Por la forma en que siempre nos apoyamos y no dejamos caer a nadie.

A todos mis profesores, todos buenos y algunos excelentes.

RESUMEN

La mecanización del trabajo en cualquier obra civil o edificación es totalmente necesaria. Como se sabe, la industria de la construcción requiere de mucha eficiencia en sus operaciones, es por ello que es de vital importancia una buena gestión de mantenimiento permitiendo así mantener en un buen estado técnico las maquinarias de una empresa. La calificación del personal, las condiciones de almacenamiento y logística, el financiamiento para las gestiones de mantenimiento, las condiciones laborales, contar con los recursos necesarios para la realización del trabajo, son aspectos a tener en cuenta para evaluar la gestión de mantenimiento en una entidad. El análisis de la situación actual evidencia que el proceso de mantenimiento de la empresa para sus equipos no es hasta ahora el más adecuado, por lo que en este trabajo se realiza un diagnóstico de la Gestión de Mantenimiento, aplicando técnicas y herramientas novedosas, tales como: Entrevistas, Encuestas, Método de Evaluación de la Gestión del Mantenimiento (Método Arenas), Diagrama de Ishikawa o diagrama causa-efecto. El diagnóstico realizado comprueba la existencia de insuficiencias en la Gestión de Mantenimiento en la unidad objeto de estudio. De esta forma se dictaminan correcciones y desviaciones de gestión que logran encausar la Gestión de Mantenimiento con un enfoque proactivo mediante un plan de medidas.

Palabras claves: eficiencia; estado técnico; gestión de mantenimiento.

ABSTRACT

The mechanization of work in any civil works or building is totally necessary. As is known, the construction industry requires a lot efficiency in its operations, which is why good maintenance management is of vital importance, thus allowing a company's machinery to be kept in good technical condition. The qualification of the personnel, the storage and logistics conditions, the financing for maintenance efforts, the working conditions, having the necessary resources to carry out the work, are aspects to take into account to evaluate the maintenance management in an entity. The analysis of the current situation shows that the maintenance process of the company for its equipment is not the most appropriate up to now, so in this work a diagnosis of Maintenance Management is carried out, applying innovative techniques and tools, such as: Interviews, Maintenance Management Evaluation Method (Arenas Method), Ishikawa diagram or cause-effect diagram. The diagnosis carried out verifies the existence of insufficiencies in the Maintenance Management in the unit under study. In this way, corrections and management deviations are determined that manage to prosecute Maintenance Management with a proactive approach through a plan of measures.

Keywords: efficiency, technical status, maintenance management.

TABLA DE CONTENIDO

Introducción	
Capítulo 1 Revisión Bibliográfica	4
1.1. ¿Qué es el mantenimiento?	
1.1.1. Evolución del mantenimiento.	
1.1.2. Evolución del mantenimiento en Cuba	7
1.1.3 ¿Qué es Gestión?	
1.1.4. ¿Qué es gestión del mantenimiento?	9
1.1.5. Ventajas del mantenimiento.	. 10
1.1.6. Importancia del mantenimiento	. 10
1.2. Clasificaciones y formas de organización.	. 11
1.4 Los indicadores de gestión y de mantenimiento	. 15
Capítulo 2 Materiales y métodos	. 20
2.1 Generalidades de la entidad	. 20
2.1.1 Áreas del taller. Funciones.	. 22
2.1.2 Maquinaria presente en el taller	. 22
2.2 Mantenimiento a los equipos de la construcción	
2.3 Política de mantenimiento en la entidad	. 24
2.3.1 Principios de la política de mantenimiento:	. 24
2.4 Procedimientos de mantenimiento automotor en la entidad	. 25
2.5 Los equipos de la empresa Equivar.	. 31
2.5.1 Caracterización de los equipos.	. 33
2.6 Los equipos, problemas y fallas problémicas.	. 34
2.7 Aplicación de métodos y herramientas para evaluar la Gestión del Mantenimie	
en la entidad.	. 35
2.7.1 Procedimiento del Método de Evaluación y Control de la Gestión	del
Mantenimiento	
2.7.2 Método de Expertos	. 37
2.7.3 Diagrama de Ishikawa	. 38
2.7.4 La encuesta	. 40
2.7.5 La entrevista	
Capítulo 3 Análisis de los Resultados	. 42
3.1 Análisis y resultados de los métodos	. 42
3.1.1 Resultado del método de expertos	. 42
3.1.2 Resultados de la entrevista	
3.1.3 Resultado de la Evaluación y Control de la Gestión del Mantenimiento	. 43
3.1.4 Diagrama Ishikawa	. 49
	. 50
3.2 Planes de medidas de Gestión	. 51
3.3 Confección de los Planes de Mantenimiento	. 51
Conclusiones	. 54
Recomendaciones	. 55
Bibliografías	. 56
Anexos	57

Introducción

La industria y la ingeniería son campos muy amplios que implican en uno de sus principios el mantenimiento de sus sistemas mecánicos, siendo el mismo un proceso de gestión que afecta transversalmente todos las áreas de la industria, ya que el mantenimiento en su esencia, tienen como objetivo mantener un activo en un estado en el cual pueda llevar a cabo la función requerida. Estas acciones incluyen la combinación de las acciones técnicas y de gestión.

El mantenimiento es, por tanto, un conjunto de actividades que tratan de compensar la degradación que el tiempo y el uso provocan en los equipos e instalaciones, tratando siempre de asegurar disponibilidad, fiabilidad, vida útil y coste.

El mantenimiento nace durante la primera revolución industrial en la segunda mitad del siglo XVIII en Gran Bretaña, unas décadas después se extendió a gran parte de Europa Occidental y América Anglosajona y finalmente concluyó entre 1820 y 1840. En los inicios eran los propios operarios quienes realizaban este tipo de tareas, no había personal dedicado única y exclusivamente a esta actividad. Con la aparición de la maquinaria más compleja se vio la necesidad de crear un departamento dedicado al mantenimiento dentro de las fábricas.

Durante la Segunda Guerra Mundial (1936-1945) aparece el concepto de fiabilidad que se define como la probabilidad de que un equipo funcione adecuadamente durante un período determinado bajo condiciones operativas específicas. Esto supone que el departamento de mantenimiento no solo va a realizar correctivos sino también preventivos.

Esto y la aparición de otros conceptos en esa época hacen que el departamento de mantenimiento requiera de personal cada vez más cualificado con unos determinados estudios.

En los años 80 se trata de volver al inicio, aparece el mantenimiento productivo total (TPM) y algunas tareas del mantenimiento se transfieren de nuevo al personal de producción. Con la aparición del TPM se empieza a combinar con (RCM) mantenimiento centrado en la confiabilidad. De ese modo, se definen que tareas realizar y que departamento las realizará: mantenimiento o producción. Esto, con escasos

cambios que dependen de particularidades de países, ciudades, empresas o fabricantes se ha mantenido de la misma forma hasta la actualidad.

El mantenimiento es importante pues una correcta planificación ayuda a definir las buenas prácticas para un mayor nivel de productividad. Un buen trabajo de mantenimiento en los equipos aumenta su vida útil, disminuye el uso de repuestos y recambios, minimiza el riesgo de avería y aumenta el valor residual del mismo.

Un mantenimiento es esencial para mantener la seguridad y la confiabilidad de los equipos, además ayuda a eliminar los riesgos laborales. La falta de mantenimiento o un mantenimiento inadecuado puede provocar situaciones peligrosas y accidentes.

En el período transcurrido desde 1989 hasta la fecha, Cuba ha sufrido dos crisis económicas de gran magnitud, una por la desaparición del Campo Socialista y las consecuencias internacionales de la Pandemia, todo esto acrecentado por las medidas de reforzamiento económico de los EEUU, produciendo importantes afectaciones, fundamentalmente de índole financiera que limita los insumos y componentes necesarios para las reparaciones, creando un retroceso en la Gestión del Mantenimiento a nivel nacional. Ya el problema era de tal magnitud y tanta generalización que para algo aparentemente tan importante y obvio, se hizo necesario enunciar un postulado sobre el tema en la Conferencia suprema del País.

El VI Congreso del Partido Comunista de Cuba celebrado en abril de 2011, definió los Lineamientos de la Política Económica y Social del Partido y la Revolución.

El numero 117 plantea: "Constituirán la primera prioridad las actividades de mantenimiento tecnológico y constructivo en todas las esferas de la economía".

La UBS Equivar, no escapó a tales crisis, aún vigentes. Es por eso, que en este trabajo se realiza una evaluación de la gestión del mantenimiento en la base Alquiler de Equipos de la UBS (unidad básica de servicios) Equivar, mediante la aplicación de herramientas novedosas, con el propósito de identificar los principales problemas que afectan la gestión del mantenimiento en la entidad, que se puede definir como buena, aunque presenta algunas deficiencias para las cuales se dictaminaron medidas para la solución oportuna de cada una de ellas.

De esta forma, se plantea como **Problema Investigativo:** El mal empleo del procedimiento de gestión de mantenimiento para los equipos de la construcción y otros equipos tecnológicos de la UEB Alquiler de equipos de la UBS Equivar.

El **Objetivo General** de la investigación es: Adecuar la Gestión para el Mantenimiento de los equipos de la construcción y otros equipos tecnológicos de la UBS Alquiler de equipos propiciando la preparación hacia un Sistema Integral de Gestión de la misma.

Objetivos Específicos:

- Evaluar la gestión del mantenimiento en la UEB Alquiler de Equipos de la UBS Equivar.
- 2. Elaborar plan de medidas en función de la evaluación de la gestión del mantenimiento en la UEB Alquiler de Equipos.
- 3. Definir las causas y efectos de los fallos y su criticidad en los equipos de construcción y otros equipos tecnológicos.
- 4. Determinar los Ciclos de Mantenimientos a aplicar.
- 5. Elaborar los planes de mantenimiento en función de la fiabilidad.

CAPÍTULO 1 REVISIÓN BIBLIOGRÁFICA

En el siguiente capítulo se realizará un análisis bibliográfico a partir de una amplia búsqueda y selección para el desarrollo de las diversas temáticas, el mismo definirá el desarrollo teórico para dar cumplimiento al objetivo propuesto en la confección de la presente investigación.

1.1. ¿Qué es el mantenimiento?

Antes de dar la definición del mantenimiento diremos que este tipo de servicios están encuadrados dentro de la gestión de una empresa en la función producción y sin ellos difícilmente llegaríamos a terminar de forma continua un proceso industrial para obtener un determinado producto.

El mantenimiento es la conservación de la maquinaria y equipo con el fin de maximizar su disponibilidad. Esta área se ha perfilado tanto que hoy en día ocupa un lugar importante en la estructura de la organización e inclusive es una de las áreas primordiales para mantener y mejorar la productividad. El mantenimiento es la actividad humana que conserva la calidad del servicio que prestan las máquinas, instalaciones y edificios en condiciones seguras, eficientes y económicas, puede ser correctivo si las actividades son necesarias debido a que dicha calidad del servicio ya se perdió y preventivo si las actividades se ejecutan para evitar que disminuya la calidad de servicio. (Kruz 2001)

Es además, toda una serie de acciones que deben realizar las personas encargadas de este departamento o área, con la finalidad de que los equipos, máquinas, componentes e instalaciones involucrados dentro de un proceso industrial estén en las condiciones requeridas de funcionamiento para lo que fue diseñado, construido, instalado y puesto en operación.

Esta serie de actividades incluyen toda una combinación de conocimiento, experiencia, habilidad y trabajo en equipo, junto con las otras dependencias de la organización, para que exista una buena labor administrativa y operativa, cumpliendo así con los indicadores de desempeño o de gestión que cada organización aplica y para que sus metas se alcancen. (Pérez Rondón 2021)

Según la RAE el mantenimiento es el conjunto de operaciones y cuidados necesarios para que instalaciones, edificios, industrias, etc., puedan seguir funcionando adecuadamente.

1.1.1. Evolución del mantenimiento.

Desde el inicio de la vida humana, las herramientas fabricadas por el hombre se han perfeccionado día con día debido a que estas les permiten conseguir sus satisfactorios físicos y psíquicos. Durante la primera revolución industrial se consideró que para fabricar un producto cualquiera era necesario emplear el 90% de mano de obra y el resto lo proporcionaban las máquinas. Conforme el tiempo pasó y a través de los esfuerzos por mejorar su función haciendo las máquinas más rápidas y precisas, en la actualidad se consigue obtener un producto a servicio con máquinas que se encargan de elaborar más del 90% de éste, lo cual ha sido posible por la dedicación de la humanidad que le ha puesto el cuidado al desarrollo de las labores de sus recursos físicos, materia a la que desde sus inicios se le llamó mantenimiento. (DELGADO)

La evolución del mantenimiento se ha adaptado a las necesidades de las industrias, y también ha ido paralelo al avance de la tecnología. Las primeras empresas que existieron estaban conformadas por grupos de personas que tenían que trabajar en cada uno de los pasos del proceso de producción y a su vez reparar las herramientas y las máquinas cuando presentaban alguna falla. Debido a que los trabajadores desarrollaban múltiples oficios, el elaborar un producto terminado para ofrecerlo en el mercado implicaba un alto costo en tiempo y dinero. (Sierra, Carrasco et al. 2019)

Con el objetivo de eficientar el proceso, las empresas se vieron obligadas a distribuir a sus trabajadores para que se dedicaran a tareas específicas, dichas tareas fueron de dos tipos: Tareas de operación de las máquinas y tareas de reparación de las mismas. Con la llegada de la Primera Guerra Mundial y con la implantación de la producción en serie, instituida por Henry Ford, se implementó un nuevo sistema de organización al interior de su empresa al cual llamó "Producción en cadena". Este nuevo sistema, fue establecido a través de la asignación de responsabilidades organizadas. (Sierra, Carrasco et al. 2019)

Con la Segunda Guerra Mundial, las empresas tuvieron que aumentar su producción para cumplir la demanda; para esto, fue necesario incrementar las jornadas laborales.

Esta manera apresurada de producir en grandes cantidades y por largos periodos de tiempo hizo que las máquinas se desgastaran más rápido debido al exceso de uso y por lo tanto presentaran fallas en su funcionamiento. La reparación de las máquinas implicaba la parada del proceso de producción lo cual generaba grandes pérdidas. Con el fin de evitar estas paradas, los empresarios le dieron una mayor importancia al mantenimiento reestructurando su organización. A partir de entonces, el mantenimiento se vuelve una herramienta fundamental para las empresas y se convierte en una actividad correctiva, de mayor importancia para elevar la productividad (Tavares 2014)

Hasta los años 50 se aplicaba el mantenimiento por rotura, con una organización y planificación mínimas (mecánica y engrase) pues la industria no estaba muy mecanizada y las paradas de los equipos productivos no tenían demasiada importancia al tratarse de maquinaria sencilla y fiable, debido a esta sencillez, así como fácil de reparar.

La creciente automatiz3ación de los procesos productivos y su complejo mantenimiento, hizo que a partir de los años 50 en Estados Unidos se introdujese el concepto de Mantenimiento Preventivo. En la década de los 60 surge en Estados Unidos es concepto Mantenimiento Productivo en el seno de *General Electric Co*. Este Concepto hacía referencia a que el objetivo del mantenimiento no era únicamente reparar los equipos sino también planificar y mejorar la productividad mediante adecuadas acciones de mejora en los mismos.

En 1971 se creó el mantenimiento productivo total TPM basado en el Mantenimiento Productivo PM estadounidense, integrando a todo el personal de la empresa (incluyendo a los proveedores) para ejecutar todo tipo de mantenimiento, se apoya en los círculos de calidad. Esto surge debido a que existían dos problemas fundamentales: la lucha entre los departamentos de Producción y Mantenimiento y la pérdida de oportunidad por no aprovechar al personal de producción para hacer con los activos, trabajos de mantenimiento autónomo.

En 1980 se empezó a aplicar el Mantenimiento Centrado en la Confiabilidad RCM luego de que a mediados de 1970, el gobierno de los Estados Unidos de América en su afán por tener más conocimiento sobre la filosofía moderna del mantenimiento de aeronaves, debidos a la cantidad de accidentes que estaban sufriendo la aviación

comercial mundial desde años anteriores. Solicitaron un reporte sobre este a la industria aérea. Dicho reporte fue escrito por Stanley Molan y Howard Heap de *United Airlaines*, titulándolo *'Reability Centered Maintenance''* (Mantenimiento Centrado en la Confiabilidad), fue publicado en 1978 y hasta la actualidad sigue siendo uno de los documentos más importantes de la historia del manejo de los activos físicos. Este reporte fue la culminación de 20 años de investigación y experimentación con la aviación comercial de los Estados Unidos de América.(González, Cervantes et al. 2007)

Desde inicios de los 90, muchas organizaciones han desarrollado versiones del proceso RCM. Durante esta etapa las revistas y conferencias dedicadas al mantenimiento de equipos se multiplicaron y los artículos y documentos se hicieron más y más numerosos aunque estos documentos describieron procesos muy diferentes a los que se le estaba dando el mismo nombre RCM, por tanto el ejército y la industria comercial vieron la necesidad de definir la frase "Proceso RCM".(Moubray 1997)

En un principio, comenzó a practicarse el mantenimiento correctivo, con el que se arreglaban o reparaban los sistemas averiados. Después llegaría el mantenimiento preventivo sistemático, con sus inspecciones periódicas o intervenciones planificadas. Últimamente, ha comenzado a desarrollarse el mantenimiento condicional, basada en la condición o estado de los equipos. Sin embargo, esta progresión aún no ha terminado, de manera que asistimos a una evolución hacia el mantenimiento del futuro (de 4ª generación), caracterizado por la evolución simultánea de los métodos y de los medios utilizados. Por lo que a los métodos se refiere, es de observar la evolución del mantenimiento preventivo condicional hacia el mantenimiento preventivo predictivo, ampliado con una dimensión más: el tiempo, en el que se pretende prever la evolución de los deterioros de los equipos para intervenir en el momento más oportuno. (De la Paz Martínez, Espinosa et al. 2000)

1.1.2. Evolución del mantenimiento en Cuba.

En Cuba, antes de 1959 y con la excepción de determinadas industrias, no estaba formalizada la actividad de mantenimiento y no fue hasta 1961 cuando comenzó a promoverse al respecto hacia esta actividad, a partir de la introducción del Mantenimiento Preventivo en el Ministerio de Industrias, con la colaboración de algunos especialistas extranjeros amigos de Cuba.

A raíz del proceso de institucionalización del país, se elaboran, tomando como base las normas y experiencias de la antigua URSS, Bulgaria y RDA, aunque adaptándolas en lo posible a las condiciones específicas cubanas, las normas de mantenimiento y explotación para las maquinas herramientas. De esta forma, se constituye el Sistema de Mantenimiento Preventivo Planificado para las maquinas herramienta de arranque de virutas, conformado de metales, elaboración de madera, equipos de fundición, equipos de izaje y transportación e implantándose este en todas las empresas Sidero-Mecanica. A partir de esto la mayoría de las empresas cubanas asumieron el Mantenimiento Preventivo Planificado, adaptándolo, claramente a sus características.

En 1985 se aprobó una nueva política de mantenimiento para las empresas del Ministerio de la Industria Básica que cambio el Sistema de Mantenimiento Preventivo Planificado a sistemas más adecuados a sus características propias implementando el Sistema de Mantenimiento por Diagnostico.

En el mes de octubre de 1987 cobró vigencia la Norma Cubana [NC 92-44: 86] que establece los términos y definiciones fundamentales y de uso más común en la realización del mantenimiento y la reparación de los artículos industriales. Esta norma concordaba con una norma CAME análoga de 1985 [SECAME 5151] y tenía como base las normas cubanas del Sistema Único de Documentación de Proyectos de 1978 y la Norma Internacional ISO 4092 de 1984.

Su contenido no se refiere a ningún sistema o estrategia particular de mantenimiento pero si diferencia los conceptos: mantenimiento y reparación. También define los tipos de mantenimiento que podrían realizarse.

Dentro de los objetivos de la política económica a partir del III Congreso del partido se señala que "Se deberá priorizar la Política de mantenimiento y reparación periódica de equipos, edificios e instalaciones debido a su importancia en el ahorro de recursos, el funcionamiento ininterrumpido del proceso productivo y la reducción de las normas del consumo de energía y materiales".

En los años 90 el país debió adaptarse empresarialmente para poder sobrevivir y desarrollarse a pesar de las condiciones desventajosas de la época debido a la caída de la URSS, realizando los cambios necesarios para salir adelante con una producción de calidad y al menor costo posible.

En la resolución sobre el desarrollo económico del país de 1991 posterior al IV Congreso del Partido se expresa: "el mantenimiento a las instalaciones y a los equipos en particular a los que resulten total o parcialmente paralizados durante el período especial se deberá garantizar su adecuada preservación para utilizarlos a plenitud cuando las circunstancias lo permitan".

De esta manera se instauró el programa de trabajo para la conservación de equipos industriales y automotores en todo el país.

En el proceso de reactivación de la economía cubana con el fomento de las pequeñas y medianas empresas, las mismas pueden dirigir sus actividades también al mantenimiento general de las industrias por lo cual será necesario reconvertir la función de mantenimiento, logrando que esta sea una acción eficiente y competitiva.(De la Paz Martínez, Espinosa et al. 2000)

1.1.3 ¿Qué es Gestión?

Según la Real Academia de la Lengua Española se define como gestión al conjunto de operaciones que se realizan para dirigir y administrar un negocio o una empresa.

1.1.4. ¿Qué es gestión del mantenimiento?

La gestión del mantenimiento no es un proceso aislado sino que es un sistema linealmente dependiente de factores propiamente ligados a la gestión del mantenimiento, así como de factores internos y externos a la organización. (Viveros, Stegmaier et al. 2013)

Es específicamente, todas las actividades de la gestión que determinan los objetivos, las estrategias y la implantación de dichas actividades por medios tales como la planificación del mantenimiento, el control del mismo y la mejora de actividades de mantenimiento y económicas.(Chuquilin Cabanillas, Huarcaya Rodríguez et al.)

El objetivo básico de cualquier gestión de mantenimiento, consiste en incrementar la disponibilidad de los activos, a bajos costos, permitiendo que dichos activos funcionen de forma eficiente y confiable dentro de un contexto operacional. (Useche, Monroy et al. 2013)

El objetivo general del mantenimiento industrial es el de planear, programar y controlar todas las actividades encaminadas a garantizar el correcto funcionamiento de los equipos utilizados en los procesos de producción. (Olarte, Botero et al. 2010)

1.1.5. Ventajas del mantenimiento.

Una buena programación del mantenimiento hace que las empresas cuenten con las siguientes ventajas:

- Elaboración de productos de alta calidad y a bajo costo.
- Satisfacción de los clientes con respecto a la entrega del producto en el tiempo acordado.
- Reducción de los riesgos en accidentes de trabajo ocasionados por el mal estado de las máquinas o sus componentes.
- Disminución de costos provocados por paradas del proceso de producción cuando se presentan reparaciones imprevistas.
- ❖ Detección de fallas producidas por el desgaste de piezas permitiendo una adecuada programación en el cambio o reparación de las mismas.
- Evita los daños irreparables en las máquinas.
- ❖ Facilita la elaboración del presupuesto acorde con las necesidades de la empresa. (Olarte, Botero et al. 2010)

1.1.6. Importancia del mantenimiento

Desde la revolución industrial, solo se aplicaba mantenimiento cuando estos fallaban parcial o totalmente (mantenimiento correctivo), en otras palabras, la importancia del mantenimiento industrial históricamente siempre ha estado en segundo plano, lo cual es un grave error pues como ya se ha mencionado las fallas en los equipos siempre están a la orden del día y una buena estrategia de mantenimiento nos permitirá; prevenir accidentes laborales, aumentando la seguridad de las personas que operan las máquinas, evitar y disminuir las pérdidas debido a paradas de producción y tiempos muertos, aumentar la vida útil de los equipos, reducir los costos totales de mantenimiento,

mejorar la calidad de la actividad industrial y según el caso la calidad del producto medio o final.

1.2. Clasificaciones y formas de organización.

La forma de clasificar los tipos de mantenimiento varía dependiendo del autor, aunque en su mayoría concuerdan que los tipos fundamentales son:

Mantenimiento correctivo o de improviso.

Mantenimiento preventivo planificado

Mantenimiento predictivo

Mantenimiento correctivo: Es el trabajo realizado sobre un equipo para restaurar su estado operacional luego de presentar una falla. Este tipo de mantenimiento no es planificado, y solo se lleva a cabo a partir del reporte que hace el usuario del equipo o el personal que realiza el mantenimiento programado. Este tipo de mantenimiento es, en la práctica, significativamente más costoso que el mantenimiento preventivo, debido a las limitaciones de tiempo que obligan a tomar decisiones con poca planeación. Sin embargo, es innegable que, sin importar lo bien que se planeen las actividades de mantenimiento preventivo, revisión y calibración, cuando las funciones principales del equipo se han visto comprometidas. En este caso, se hace necesario tener procedimientos de acción claramente definidos, con el fin de minimizar el impacto causado por la falla y el tiempo de paro del servicio.

Ventajas:

- Bajo Costo
- Menos personal

Desventajas:

- ❖ Aumento de cotes debido a las paradas no planificadas de los equipos.
- ❖ Aumento de costes laborales, especialmente si se necesita tiempo extra.
- Ll costo involucrado en la reparación o sustitución del equipo.

- Equipos secundarios pueden sufrir posibles daños durante las averías del elemento principal.
- Le uso ineficiente de los recursos de personal.

Mantenimiento preventivo planificado: Es una técnica científica del trabajo industrial, que en especial está dirigida al soporte de las actividades de producción y en general a todas las instalaciones empresarias. Entre sus actividades principales están: inspección periódica de activos y del equipo de la planta, para descubrir las condiciones que conducen a paros imprevistos de producción o depreciación perjudicial y conservar la planta para anula dichos aspectos, adaptarlos o repararlos, cuando se encuentren aun en una etapa incipiente.

Este tipo de mantenimiento busca garantizar que las condiciones normales de operación de un equipo o sistema sean respetadas es decir que el equipo esté libre de polvo, sus lubricantes conserven sus características, y sus elementos consumibles tales como filtros, mangueras, correas, etc. sean reemplazadas dentro de su vida útil. (Villegas 2016)

Ventajas:

- * Reduce el tiempo de inactividad y por lo tanto provoca un aumento de la disponibilidad de los equipos e instalaciones.
- ❖ La flexibilidad que permite el ajuste de la periodicidad del mantenimiento.
- ❖ Aumenta de la vida útil de los componentes.
- ❖ Ahorro de energía.
- * Reducción de averías.
- ❖ Estimación de un 12% al 18% más de ahorro de costes frente a una filosofía de mantenimiento correctivo.

Desventajas:

* Todavía es probable que ocurran averías.

- ❖ Mano de obra intensiva.
- Incluye la realización de mantenimientos que realmente no sean necesario, pero si recomendados.
- Probabilidad de daños accidentales a los componentes al realizar el mantenimiento que no sean necesarios.

Mantenimiento predictivo: Son conocidas así, un tipo de tareas que miden la condición de los equipos, a través de variables que indican la condición de un elemento o componente, con el fin de obtener parámetros de funcionamiento de las máquinas y compararlo con los parámetros dados por los fabricantes, y así tomar la acción apropiada para manejar las consecuencias de estas fallas. Incluye inspecciones visuales y auditivas, a fin de descubrir ruidos o señas fuera de lo esperado. Es usado indiferentemente con el término Mantenimiento por condición.

Ventajas.

- ❖ Aumento del componente operacional vida / disponibilidad.
- Permite a las acciones correctivas preventivas.
- Disminución del tiempo de inactividad de los equipos.
- Disminución de los costos de materiales y mano de obra.
- ❖ Ahorro de energía.
- ❖ Estimación de un incremento del 8% al 12% más de ahorro de costes sobre los ya conseguidos con un programa de mantenimiento preventivo

Desventajas:

- Importante inversión inicial en equipos de diagnóstico.
- ❖ Aumento de la inversión en la capacitación del personal.
- ❖ Ahorros potenciales que no se ven fácilmente por la dirección
- ❖ Ahorros a largo plazo.

Otras formas de clasificar el mantenimiento son:

- Mantenimiento proactivo.
- ❖ Mantenimiento basado en la confiabilidad.
- Mantenimiento productivo total.

Formas de organización:

Los contratiempos o desperfectos son algo común en todas las empresas aunque es posible reducirlos al mínimo con un buen plan de mantenimiento preventivo, el cual es posible una vez elaborada una lista de los equipos de la empresa, codificados y analizado el Modelo de Mantenimiento que mejor se ajusta a cada uno de ellos.

Evolución:

A continuación, se detallan las características principales de cada una de las generaciones a través de las cuales se ha venido desarrollando el mantenimiento como se muestra en la tabla 1.1

Tabla 1.1. Características principales de las generaciones de mantenimiento

Generación	Época en que aparece	Principales fundamentos
Primera generación	Desde el inicio de la Revolución Industrial	Mantenimiento correctivo puro
Segunda generación	A partir de la Segunda Guerra Mundial	Mantenimiento preventivo planificado
Tercera generación	Década de los 80	Mantenimiento predictivo o por condición, Análisis de fallo, RCM, y TPM
Cuarta generación	Década de los 90	World Class Management y la eficiencia en la gestión
Quinta generación	Siglo XXI	Tero tecnología. Visión técnico económica de los activos y del costo del ciclo de vida

Fuente: (Rodríguez Pérez 2017).

1.4 Los indicadores de gestión y de mantenimiento.

Con el objetivo de constatar si el desempeño organizacional es el más adecuado, se realizan mediciones de los procesos a fin de llevar a cabo un control (lo que no se mide no se controla) en el interés de verificar que las acciones se realizan dentro de los parámetros preestablecidos, y que se están tomando las decisiones más acertadas, en otras palabras, que se están llevando a cabo una adecuada gestión. En este contexto surgen los indicadores de gestión. (Zambrano, Prieto et al. 2015)

Un indicador, según (Cruz and Pérez 2001)se define como un parámetro numérico que facilita la información sobre un factor crítico identificado en la organización, en los procesos o en las personas respecto a las expectativas o percepción de los clientes en cuanto a costo- calidad y plazos.

Un indicador de gestión es la medición cualitativa del comportamiento y el desempeño de un sistema de producción o proceso, cuya magnitud puede ser comparada con el nivel de referencia, detectando desviación y luego tomando las acciones correctivas y preventivas.

Existe una variedad de indicadores que se pueden llevar en la gestión de mantenimiento, estos se implementan para medir el comportamiento de los sistemas productivos, los cuales son utilizados para cumplir con las metas definidas en un plan de trabajo generalmente realizado anualmente. Previamente se deben llevar registros de datos que permitan el cálculo periódico de los indicadores.

A continuación se muestran algunos de los indicadores de gestión que se usan en las empresas a nivel mundial.

Disponibilidad:

$$D = \frac{TPEE}{TPEF + TPDR} \tag{1.1}$$

 $D \rightarrow Disponibilidad$

 $TPEF \rightarrow Tiempo promedio entre fallas$

TPDR → Tiempo promedio de reparación

Confiabilidad:

$$TPEF = Horas totales en sevicio/Cantidad de fallas reportadas$$
 (1.2)

RF = Cantidad de fallas/horas totales en servicio

$$Ps = 1 - Rf \tag{1.3}$$

 $TPEF \rightarrow Tiempo \ promedio \ entre \ fallas$

 $RF \rightarrow Rata \ o \ tasa \ de \ fallas$

 $Ps \rightarrow Probabilidad de supervivencia$

Mantenibilidad:

$$TPDR = \frac{\textit{Horas de trabajo correctivo}}{\textit{cantidad de fallas}}$$

(1.4)

TPDR → Tiempo promedio de reparación

Costos:

Indicador del costo total de mantenimiento (CTM) con respecto al costo total de producción:

Costo de mantenimiento =
$$\left(\frac{CTM}{Costo \ total \ del \ sistema \ productivo}\right) \times 100$$
 (1.5)

CTM → Indicador de costo total del mantenimiento

Indicador del costo de mano de obra con respecto al costo total de mantenimiento:

Costo del personal de mantenimiento =
$$\frac{\text{Costo de personal del mantenimiento}}{\text{CTM}} \times 100$$
 (1.6)

Indicador de costo de mantenimiento correctivo con respecto al costo total de mantenimiento

$$Mantenimiento\ correctivo = \frac{\textit{Costo total\ del\ mantenimiento\ correctivo}}{\textit{CTM}} \times 100\ (1.7)$$

Indicador de costo de materiales y repuestos con respecto al costo total de mantenimiento

Costo de materiales y repuestos =
$$\frac{Costo de materiales y repuestos}{CTM}$$
 (1.8)

Indicador de costo en relación a las órdenes de trabajo (OT) y la cantidad emitida:

Costo promedio de órdenes de trabajo =
$$\frac{Costo total de OT}{Cantidad total de OT}$$
 (1.9)

Fuente: (Zambrano, Prieto et al. 2015)

(Los que usan en la Empresa).

1.4.1 Costo total en taller:

$$Ctt = Gmo + Gp + Gm + Gin$$
 (Pesos) (1.10)

 $Ctt \rightarrow Costo total en taller$

Gmo → Gasto de mano de obra

 $Gp \rightarrow Gastos de piezas$

 $Gm \rightarrow Gastos de Materiales$

Gin → Gastos indirectos

1.4.2 Tiempo total en talleres:

$$Ttt = Tee + Te + Tep + Tem + Teu$$
 (Horas) (1.11)

 $Ttt \rightarrow Tiempo total en talleres$

Tee → Tiempo de espera de ejecución

 $Te \rightarrow Tiempo en ejecución$

 $Tep \rightarrow Tiempo de espera de pieza$

 $Tem \rightarrow Tiempo de espera de materiales$

 $Teu \rightarrow Tiempo de espera por el usuario$

1.4.3 Tiempo total por mantenimiento:

$$Ttm = Tmet + Tmeconst + Tmecomp$$
 (Horas) (1.12)

 $Ttm \rightarrow Tiempo total por mantenimiento$

 $Tmet \rightarrow Tiempo por mantenimiento de equipos de transporte$

Tmeconst → Tiempo por mantenimiento de equipos de construcción

 $Tmecomp \rightarrow Tiempo por mantenimiento de equipos complementarios$

1.4.4 Tiempo total por averías:

$$Tta = Taet + Taeconst + Taecomp$$
 (Horas) (1.13)

 $Tta \rightarrow Tiempo total por averías$

 $Taet \rightarrow Tiempo por averías de equipos de transporte$

Taeconst → Tiempo por averías de equipos de construcción

 $Taecomp \rightarrow Tiempo por averías de equipos complementarios$

1.4.5 Costo total por mantenimiento:

$$Ctm = Cmet + Cmeconst + Cmecomp$$
 (Horas) (1.14)

 $Ctm \rightarrow Costo$ total por mantenimiento

 $Cmet \rightarrow Costo$ por mantenimiento de equipos de transporte

Cmeconst o Costo por mantenimiento de equipos de construcción Cmecomp o Costo por mantenimiento de equipos complementarios

1.4.6 Costo total por averías:

$$Cta = Caet + Caeconst + Caecomp$$
 (Horas) (1.15)
 $Cta \rightarrow Costo total por averías$

 $Caet \rightarrow Costo$ por averías de equipos de transporte

Caeconst → Costo por averías de equipos de construcción

Caecomp o Costo por averías de equipos complementarios

CAPÍTULO 2 MATERIALES Y MÉTODOS

En el siguiente capítulo se hace una descripción de la entidad objeto de estudio, sus funciones y los procedimientos de gestión que se realizan en la entidad.

2.1 Generalidades de la entidad

La Unidad Básica de Servicios Equivar surge como empresa el 9 de abril de 2001, en el año 2016 se producen cambios estructurales, aprobándose el 17 de octubre de 2016 por Resolución del presidente de la Organización Superior de dirección Empresarial de Construcción y Montaje. El 1ro de diciembre del 2016 comenzó a funcionar como UBS de EQUIPOS Y TALLERES. Está ubicada en Guásimas, está compuesta por cuatro bases; una de transporte de carga, una de talleres, una de alquiler de equipos y una de transporte de pasajeros.

Su misión es brindar servicios de construcción, montaje y conservación para obras destinadas al turismo, siendo una empresa competente e innovadora, posicionada como líder en el sector constructivo del país por su alta calidad distintiva, satisfaciendo las expectativas de los clientes; además, respaldada por la profesionalidad, experiencia, motivación y sentido de pertenencia del Capital Humano que forja un futuro sostenible.

Las misiones específicas de las unidades empresariales de base que integran la empresa es brindar servicios de transportación de cargas, personal y alquiler de equipos asociados a la actividad constructiva, así como la reparación y mantenimiento de los mismos a las entidades que conforman la Empresa de Construcción y Montaje de Obras del Turismo de varadero, y las demás entidades que participan en el proceso, satisfaciendo las expectativas demandadas por sus clientes.

En cambio, su visión está puesta en que son una entidad que establece un modelo de liderazgo competitivo ante el mercado nacional, con clientes fidelizados y expectativas satisfechas en un entorno laboral con alta estabilidad del componente humano motivado y comprometido. La empresa es competente, con servicios y tecnologías sustentables que propicia alianzas estratégicas fuertes y con presencia internacional.

El objeto social es brindar servicios de construcción civil y montaje de nuevas obras, edificaciones e instalaciones; de demolición, desmontaje, remodelación, restauración,

reconstrucción, y rehabilitación de edificaciones, instalaciones y otros objetos existentes y de reparación y mantenimiento constructivo.

En la empresa se considera como estrategia maestra aprovechar al máximo las políticas del país, básicamente la necesidad del desarrollo acelerado del sector turístico en Varadero donde están radicadas entidades constructoras extranjeras y de clase con las cuales se pueden realizar alianzas estratégicas favorables para potenciar el crecimiento empresarial alcanzado a partir de la adecuada logística que se posee, la calidad de los procesos constructivos y el ser una empresa perfeccionada competente.

Organigrama de la empresa:

Figura 1.1 Organigrama de la empresa

La empresa cuenta actualmente con 367 equipos, distribuidos en sus cuatro bases según su uso y clasificación.

El mantenimiento que se le realiza a estos equipos es fundamentalmente preventivo planificado aunque también en una u otra ocasión, el mantenimiento correctivo.

2.1.1 Áreas del taller. Funciones.

En el anexo 1 se muestran todas las áreas que componen la base de taller y las funciones que se realizan en cada una de ellas.

2.1.2 Maquinaria presente en el taller.

- ❖ Maquinas presentes en el área de agregados:
- ❖ Torno Universal 16K20
- Torno Universal paralelo Excélsior Akron 180
- * Rectificadora de válvulas PEG 236
- * Rectificadoras de Bandas UKT GP117
- ❖ Fresadora universal 6P82
- ❖ Mandrinadora vertical wz160
- ❖ Mandrinadora de Bloc BERCO
- ❖ Desbrilladora de Bloc Manual 229 T3
- ❖ Taladro de Banco HECKERT
- Prensa Hidráulica Manual OKC 1671M
- Prensa Hidráulica Eléctrica OKC 1671M
- Prensa Térmica CRIOLLO
- Remachadora neumática P335
- ❖ Banco de pruebas de bomba de inyección ODOLINI WT 103

Maquinas presentes en el área de Maquinado:

- ❖ Torno Universal 163
- ❖ Torno Universal C11MT

- ❖ Torno Universal C11MB
- Torno Universal Harrison
- Torno Para soldadura especial Criollo
- ❖ Taladro Radial 2^a 554
- ❖ Taladro de columna Bimak 32ME
- ❖ Recortador GT7307
- * Rectificadora Cilíndrica SU321
- ❖ Rectificadora plana3G722 B
- ❖ Rectificadora de cigüeñales 3B423
- Fresadora universal FG 321
- ❖ Fresadora universal ZEUS UF 1

2.2 Mantenimiento a los equipos de la construcción.

En la empresa Equivar el mantenimiento que se emplea a los equipos de la construcción es el mantenimiento preventivo. Este consiste en realizar las labores de engrase, lubricación y reparaciones menores o mayores programadas (antes de que ocurran las fallas).

Pero en el sector de la construcción es conocido por otra nomenclatura.

- ❖ Mantenimiento tipo A: Es el relacionado con el engrase solamente.
- ❖ Mantenimiento tipo AB: Su función está ligada al cambio de aceite.
- Mantenimiento tipo ABC: Este está referido al cambio de alguna pieza que haga falta cambiar específicamente y que no se realizó en ninguno de los mantenimientos mencionados anteriormente.
- ❖ Mantenimiento tipo ABCD: Es el conocido como mantenimiento general.

Luego ya el ciclo comienza a repetirse a medida que avanza el tiempo de explotación de los equipos.

2.3 Política de mantenimiento en la entidad

- La política de mantenimiento en la empresa está dirigida a organizar la gestión del mantenimiento para mejorar el estado técnico de los equipos, elevando la disponibilidad del equipamiento y las instalaciones que conforma la producción, garantizando la seguridad de los trabajadores y la disminución de los costos de producción.
- Esta política garantiza la fiabilidad del equipamiento dentro de los parámetros establecidos, de manera que garantice el cumplimiento de los planes de producción con un mínimo de costos de mantenimiento.
- 3. La política va encaminada, además, a lograr la remodelación del equipamiento tecnológico y líneas tecnológicas de producción, que permita recuperar la capacidad instalada con mayor eficiencia.
- 4. La política de mantenimiento establece como premisa que la empresa ECMOT-Var cuente con un Proceso o Sistema de Mantenimiento de acuerdo a las condiciones de la entidad, que sea del conocimiento de sus trabajadores y cuente con sus procedimientos, este proceso de Mantenimiento, se chequeara sistemáticamente en las Reuniones Colegiadas de la Organización y se controlan su cumplimiento por la dirección de la empresa ECMOT-Varadero.

2.3.1 Principios de la política de mantenimiento:

- 1. Establecer el Proceso de Mantenimiento Industrial que garantice su aplicación y ajuste a las características generales y particulares de las actividades presentes en la ECMOT- Varadero, a fin de incrementar la disponibilidad técnica de los equipos, reducir los costos de operación y asegurar el cumplimiento de los planes de producción.
- 2. Implantar los procedimientos para la política del mantenimiento, que se establecerán los principios básicos y responsabilidades en materia de

- organización y dirección del sistema, definiendo además los indicadores de gestión que permitan el análisis y evaluación sistemática de los resultados.
- 3. Definir las bases organizativas para garantizar el aseguramiento logístico necesario para los insumos de uso difundido y de ferretería requeridos en el mantenimiento de la industria, según la política que se establece en el país.
- 4. Establecer un programa de Formación y Capacitación para incrementar el nivel de competencia del Capital Humano vinculado a la Gestión del Mantenimiento y desarrollar la Ingeniera del mantenimiento.
- Consolidar el Programa de Producción y Recuperación de Partes, Piezas y Agregados, garantizando la rehabilitación y modernización de la base mecánica.
- 6. Establecer en la estructura de la Empresa una unidad organizativa, que dirija, gestione y controle el Proceso de mantenimiento.
- 7. Integrar el área de mantenimiento a los procesos inversionistas, desde su etapa conceptual, para garantizar la capacidad del personal, la puesta en marcha y explotación ininterrumpida de la tecnología adquirida, su mantenibilidad y preservación.
- 8. Organizar la Supervisión y el Control para el cumplimiento de esta política mediante los controles a la actividad, con el empleo de la guía laborada con este fin y el uso de inspectores de mantenimiento tanto de nuestra organización como fuera de ella.
- 9. Uso de la red existente de servicios técnicos especializados de mantenimiento de los servicios.

2.4 Procedimientos de mantenimiento automotor en la entidad.

Para llegar a la ejecución de los mantenimientos a los equipos se debe realizar la organización de estos mantenimientos, los cuales son ordenados por el Especialista de

Mantenimiento y Talleres, el cual teniendo el dominio de la periodicidad de cada equipo, organiza el orden de los mantenimientos.

Objetivo: Establecer los métodos para la ejecución de los servicios de mantenimientos y reparación de equipos industriales

Alcance: Abarca todas aquellas actividades de mantenimiento y reparación de equipos industriales que potencias el normal funcionamiento de los mismos, tributando a la calidad y la eficiencia de la producción.

Para cada equipo, el fabricante tiene definido por km recorridos el mantenimiento que se le debe aplicar a los mismos y en el caso de los equipos de construcción esto se define mediante las horas de explotación, cada uno teniendo como referencia sus características específicas, pero la empresa Equivar realiza los mantenimientos a partir de del combustible que consumen dichos equipos, se realiza la conversión de litros a km o de litros a horas, y lo controlan a partir de un MTPC en el cual introducen el día y la cantidad de combustible que le suministran a cada equipo y a raíz de eso se calcula cada cuántos litros hay que realizarle el mantenimiento y el tipo, todo esto depende como se explica anteriormente de la cantidad de combustible que consuma el equipo. A partir de lo que dice el fabricante ellos realizan un modelo el cual llaman Ciclo Desarrollado, en este se ofrece información del tipo de mantenimiento que se le debe realizar en cada momento, fijándose en la carta técnica, que ellos también elaboran, el cual explica detalladamente las actividades de mantenimiento que se deben realizar en cada equipo, en cada momento y en cada tipo de mantenimiento.

Se lleva a cabo el mismo cálculo para las piezas de repuesto, estas se condicionan según indicaciones del fabricante, dependiendo de las horas o kW.

La denominación en el MICONS de los mantenimientos tiene una particularidad con respecto a lo exigido por los fabricantes de equipos. No posee un parque homogéneo.

Con relación a la cantidad de mantenimientos exigidos por el fabricante, según el período de visualización (el cuál puede estar dado por litros o por kW); en el MICONS se le nomencla con letras del abecedario.

a) Mantenimiento A: Este implica, mayormente, los trabajos de revisión, comprobación y completamiento de algunos agregados y niveles de materiales de explotación,

respectivamente, después de las primeras horas o kW demandados por el fabricante. Además, del engrase de aquellos conjuntos y articulaciones que trabajen expuestas a los diversos factores que degraden su fiabilidad y por el tiempo de trabajo lo requieran. Generalmente requiere hasta 1 hombre – horas (h/h).

- b) Mantenimiento AB: Este mantenimiento está dado por la realización del mantenimiento anterior y otros trabajos propios ya del período de tiempo o distancia recorrida. A partir de este mantenimiento se produce a realizar cambios en los materiales de explotación y accesorios en los agregados que según el fabricante, lo requieran. Para este mantenimiento se requiere entre 4 a 5 hombres horas (h/h).
- c) Mantenimiento ABC: Este mantenimiento está dado por la realización del mantenimiento anterior y otros trabajos propios ya del período de tiempo o distancia recorrida. A partir de este se efectuarán cambios de agregados y se realizarán otros trabajos en el tren de rodaje de los equipos. Para este mantenimiento se requiere de entre 7 a 8 hombres horas (h/h).
- d) Mantenimiento ABCD: Este mantenimiento está dado por la realización del mantenimiento anterior y otros trabajos propios ya del período de tiempo o distancia recorrida. En este mantenimiento se realizan cambios de agregados que, según el fabricante, pueden afectar la disponibilidad y fiabilidad del equipo y su función. Se requiere de 10 a 12 hombres horas (h/h).
- e) Mantenimiento ABCDE: Este mantenimiento está dado por la realización del mantenimiento anterior y otros trabajos propios ya del período de tiempo o distancia recorrida. En este mantenimiento se le restablece, de manera, total la estructura y funcionamiento del equipo. Este mantenimiento requiere de 16 a 18 hombres horas (h/h). Buscar en la empresa

Otros mantenimientos que se realizan en la entidad son:

Servicio diario: El objetivo del servicio diario es comprobar al comienzo y al final del turno, el estado del equipo, y eliminar los defectos localizados durante la inspección, que por lo general son de poca importancia y no producen errores del producto terminado, ni riesgos de manipulación y no impiden la utilización del equipo. No es necesario paralizar la producción.

Revisión: Se realiza entre una reparación y otra, según estructura del ciclo de reparación correspondiente al equipo y al plan. El objetivo es comprobar el estado del equipo y determinar el volumen de trabajo necesario para la próxima reparación del equipo.

Los trabajos que pueden realizarse durante la revisión son:

Comprobación de los mecanismos, caja de velocidad, embragues, etc.

Comprobación del funcionamiento del sistema de lubricación.

Comprobación del calentamiento no excesivo de las partes giratorias del equipo.

Comprobación de las holguras entre las uniones móviles y regulación de los mecanismos.

En algunos casos la revisión se realiza con la separación parcial y limpieza de algunos mecanismos.

Reparación Pequeña: El objetivo es que mediante la sustitución o reparación de una pequeña cantidad de piezas y con la regulación de los mecanismos, se garantiza la explotación normal del equipo hasta la siguiente reparación, según estructura del ciclo de representaciones correspondiente al equipo y el plan. Debido al volumen mínimo de trabajo que durante ella se realiza, es un tipo de servicio preventivo.

Durante la reparación pequeña el equipo no trabaja y se realizan los siguientes trabajos:

Desmontaje parcial del equipo: Desmontaje de dos o tres mecanismos (embragues de fricción, husillo etc.). Desmontaje de las tapas de las cajas de velocidades y de avances, para su revisión y limpieza.

Limpieza del equipo: Limpieza de las piezas de los mecanismos desmontados.

Desmontaje del husillo: Rectificación de las superficies de trabajo del husillo, escarpado de los cojinetes del husillo si son cojinetes de deslizamiento; ajuste del husillo y regulación de los cojinetes de rodamiento.

Desmontaje del embrague de fricción: Sustitución de los discos desgastados, regulación del embrague de fricción.

Comprobación de la holgura entre los árboles y cojinetes: Sustitución de los discos desgastados, regulación de los cojinetes de rodamiento.

Sustitución de las ruedas dentadas con dientes rotos o reparación de las ruedas si es posible.

Sustitución de los elementos de fijación rotos o desgastados.

Sustitución de las tuercas desgastadas de los tornillos principales y reparación de las roscas de los mismos.

Comprobación de los mecanismos de control y corrección de los defectos localizados.

Rectificación de las guías de las bancadas, mesas, etc.

Comprobación y reparación de los sistemas de lubricación y refrigeración.

Determinación de las piezas que exigen su sustitución durante la próxima reparación.

Comprobación de la precisión.

Prueba del equipo en marcha sin carga (sin carga quiere decir que se hace funcionar el equipo sin que se haga ningún trabajo en él), comprobación del ruido y del calentamiento excesivo de los cojinetes, etc.

Reparación Mediana: El objetivo es que, mediante el desmontaje parcial de agregados de la mecánica y la reparación o sustitución de piezas en mal estado, según estructura del ciclo de reparaciones correspondiente al equipo y el plan, se garantiza la precisión necesaria, potencia y productividad del equipo, hasta la próxima reparación planificada.

Durante la reparación mediana el equipo no trabaja y se realizan los siguientes trabajos:

Los trabajos previstos para la reparación pequeña.

Escrepado de las guías desgastadas de las bancadas, mesas, carros, etc.

Desmontaje de los mecanismos (cajas de velocidades y avances, mecanismos del delantal del torno, etc.).

Sustitución de las ruedas dentadas desgastadas de las trasmisiones de ruedas y tornillos

sin fin.

Pintar los recipientes de aceite y exteriormente el equipo.

Comprobación de la precisión.

Reparación General: El objetivo es garantizar todos los parámetros de la máquina

mediante el desmontaje total, de la máquina, la sustitución o reparación de todas las

piezas básicas y los mecanismos desgastados. Es la reparación planificada de máximo

volumen de trabajo.

Durante la reparación general se realizan los siguientes trabajos:

Los trabajos preventivos para la reparación mediana.

Desmontaje total del equipo.

Sustitución o reparación de las bombas de aceite, reparación del sistema de lubricación

y del sistema hidráulico.

Rectificado de todas las superficies guías.

Comprobación y corrección de los defectos de la base del equipo.

Comprobación de la precisión.

Reparación imprevista: Es aquella que es necesaria realizar cuando ocurre una avería,

en dependencia de la magnitud de la misma puede tener la extensión de una reparación

pequeña, mediana, o general, en casos especiales puede ser necesaria la reposición de la

máquina, deben ser investigada a los efectos de determinar sus causas y tomar las

medidas para evitar su repetición.

A continuación, se relacionan algunas causas posibles de averías:

Mala lubricación.

Sobrecarga del equipo.

Defectos de operación.

30

Ciclos de reparaciones inadecuados.

Mala calidad de la reparación anterior.

Defectos de los materiales utilizados.

Caída o exceso de voltaje.

Fallos en la red del sistema eléctrico.

Desperfectos provocados por agentes químicos.

Las averías deben ser investigadas a los efectos de determinar sus causas y tomar medidas destinadas a evitar su repetición en el futuro.

Limpieza: Tipo de servicio periódico (acción de eliminar el polvo de hierro fundido u otras partículas metálicas, en el caso de las máquinas de herramientas, restos de hormigón y otras suciedades en caso de mezcladores y moldes para la fabricación.

2.5 Los equipos de la empresa Equivar.

COMPRESOR DE COMBUSTIÓN S/ REMOLQUE → 14

CONCRETERA ELÉCTRICA → 7

CONCRETERA DE COMBUSTIÓN → 4

MONTACARGAS DE COMBUSTIÓN → 5

MANIPULADOR TELESCÓPICO → 8

MOTOVOLQUETAS DE COMBUSTIÓN → 25

TRANSFORMADOR ELÉCTRICO → 7

MOTO-GENERADOR DE COMBUSTIÓN \rightarrow 3

TORRE ELEVADORA PERSONAL CARGA → 4

GRÚAS CAMIÓN → 7

EXCAVADORAS S/ NEUMÁTICOS $\rightarrow 2$

GRÚAS TORRES → 1

MINICARGADORES S/NEUMÁTICOS → 6

RETROPALA \rightarrow 6

TRACTOR CON OTROS ADITAMENTOS \rightarrow 3

TRACTOR S/ RUEDAS \rightarrow 15

TRACTOR MULTIPROPÓSITO → 9

AUTOMÓVIL → 6

AUTO RURAL/ JEEP → 8

MOTOCICLETA \rightarrow 3

CAMIONETA CERRADA - PENEL \rightarrow 1

CAMIONETA ABIERTA PICK UP- \rightarrow 5

CARRETA AGRÍCOLA → 4

CAMIÓN AUXILIO → 1

CAMIÓN PLATAFORMA - PLANCHA → 53

TANQUE DE AGUA S/ CAMIÓN → 6

TANQUE DE COMBUSTIBLE S/ CAMIÓN → 4

CAMIÓN PLATAFORMA – AUTOCARGABLE → 2

CAMIÓN CAJA DESMONTABLE – SLUG → 2

CUÑA TRACTORA → 26

CAMIÓN VOLTEO → 20

OMNIBUS CATORCE O MÁS PLAZAS →48

PLANTAS DE ENGRASE S/ CAMIÓN → 1

S/ REMOLQUE PLATAFORMA → 12

REMOLQUE PLATFORMA POR BARRA → 14

S/ REMOLQUE PORTAPANEL \rightarrow 1

S/ REMOLQUE VOLTEO $\rightarrow 7$

S/ REMOLQUE SILO CEMENTO QTA RU \rightarrow 7

SEMIOMNIBUS TRANS-PER/ CAMIÓN → 2

TALLER DE MECÁNICA S/ CAMIÓN → 5

TOTAL: 367 equipos

2.5.1 Caracterización de los equipos.

En la empresa Equivar hay un total de trescientos sesenta y siete equipos, los mismos están divididos por clase, el estado técnico de cada uno de ellos varía entre propuesto a baja, bueno, regular y malo. Para un total de catorce compresores de Combustión S/ Remolque, nueve están en estado técnico regular y cinco en mal estado. Las concretaras eléctricas son siete, de ellas, cinco están en estado regular y cinco en estado técnico malo. Las concreteras de combustión son un total de cuatro, dos en mal estado y uno regular. Hay cinco montacargas de combustión, cuatro en buen estado y uno regular. ocho manipuladores telescópicos, uno propuesto a baja, seis regular y uno malo. Las motovolquetas de combustión son veinticinco, propuesta a baja hay una, catorce regular y diez malos. También hay siete transformadores eléctricos, cinco en estado técnico regular y dos malos. Los moto-generadores de combustión son tres, todos en estado regular. Tres grúas camión en estado regular y cuatro en estado malo para un total de siete. Las excavadoras sobre neumáticos son tres, uno en buen estado y dos en estado técnico regular. Dos grúas s/ neumáticos, uno propuesta a baja y uno malo. Hay una grúa torre que está en mal estado técnico los minicargadores s/ neumáticos se encuentran casi todos en mal estado, de seis, cinco están en mal estado y uno en estado regular. Seis retropalas, cuatro en estado regular y dos en mal estado. Hay tres tractores con aditamentos, dos se encuentran en estado técnico regular y uno en mal estado. Son quince tractor S/ ruedas, uno propuesto a baja, seis en buen estado, siete regular y uno malo. Ocho tractores multipropósito, uno propuesto a baja, tres regular y cuatro malos. Hay seis automóviles, uno en buen estado, cuatro en estado regular y uno en mal estado. Camión auxilio hay uno y está en estado regular. Hay cincuenta y tres camión plataforma-plancha, nueve en buen estado, treinta y siete en estado regular y siete en mal estado. Tanque de agua/ camión son seis, dos en buen estado, tres en estado regular y uno en mal estado. Hay dos camiones plataforma – autocargable, ambos en estado regular. Son además, dos camión caja desmontable – slug, ambos también en estado regular. Cuñas tractoras hay veintiséis, de ellas, uno propuesto a baja, seis buenos, siete en estado regular y doce en mal estado. Hay veinte camión volteo, uno propuesto a baja, siete buenos, cinco regular y siete malos. Hay cuarenta y ocho ómnibus de catorce o más plazas, seis propuestos a baja, dos buenos, veintiséis regular y trece en mal estado y uno propuse. Hay una planta engrase / camión y está en estado regular. cinco s/remolque plataforma, uno propuesto a baja, dos regular y dos en mal estado. Hay catorce remolque plataforma por barra, nueve en estado regular y cinco en mal estado técnico. Un s/ remolque porta panel en mal estado. S/ remolque volteo hay siete, tres en buen estado, uno en estado regular y tres en mal estado. Hay también seis s/ remolque silo cemento QTA RU, uno bueno, tres regular y dos malo. Dos semiómnibus para el transporte de personas/ camión, ambos en estado regular. También hay cinco taller mecánica s/ camión, tres en buen estado, uno regular y uno malo.

2.6 Los equipos, problemas y fallas problémicas.

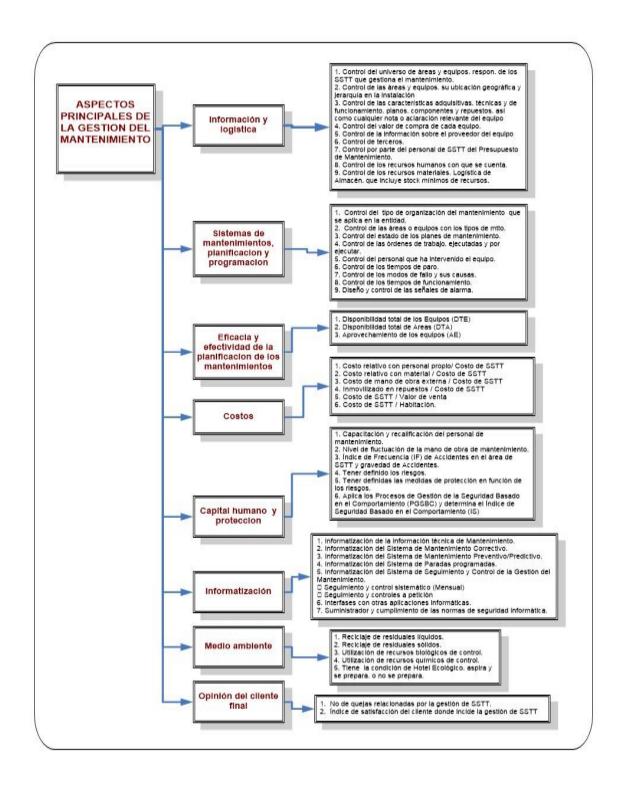
La UBS Equivar tiene 367 equipos, pero en la base de alquiler de equipos hay un total de 141.

En la tabla 2.1 de los Anexos se pueden apreciar los equipos y las fallas más recurrentes.

2.7 Aplicación de métodos y herramientas para evaluar la Gestión del Mantenimiento en la entidad.

Para evaluar correctamente la gestión de la Ingeniería del Mantenimiento se aplicaron distintos métodos y herramientas que permiten detectar los diferentes problemas que afectan a la entidad obteniendo resultados fiables.

2.7.1 Procedimiento del Método de Evaluación y Control de la Gestión del Mantenimiento.


Consiste en un método que permite mediante 8 aspectos fundamentales evaluar y controlar la gestión del mantenimiento en las entidades de servicio. Se compone de dos herramientas, la primera es un cuestionario con todos los indicadores o aspectos ponderados y evaluables de la Gestión del Mantenimiento, los cuales deben ser evaluados por el experto del tema en la instalación que en este caso en particular sería el diplomante auxiliado por el criterio de otros especialistas y el tutor.

Los indicadores pueden ser evaluados como óptimo, bueno y deficiente, a criterio del especialista

Propuesta detallada con clave, para evaluar aspectos y subaspectos. (Anexo 3) Cada tipo de evaluación (Óptimo, Bueno y Deficiente) posee un rango numérico y en definitiva ya sean aspectos cualitativos o cuantitativos, con la evaluación propuesta se logra unificar todos los subaspectos con un valor numérico de evaluación. Es el evaluador y su experiencia, el que obviamente, permita decidir sobre un valor seleccionado de los rangos. (Arenas, 2009)

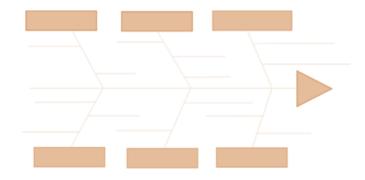
El segundo instrumento a utilizar es una Hoja de Cálculo de Excel, donde se colocan los valores asignados por el experto a cada indicador con su subaspecto correspondiente, de esto se encarga el investigador que lleva a cabo el procedimiento.

Al culminar se obtiene el Indicador General de la Gestión del Mantenimiento (IGGM), el cual nos proporciona un número que indica el comportamiento de la Gestión del Mantenimiento y en general el funcionamiento del Departamento de Servicios Técnicos.

2.7.2 Método de Expertos

El método de expertos o método Delphi es una técnica de recogida de información que permite obtener la opinión de un grupo de expertos a través de la consulta reiterada. Esta técnica, de carácter cualitativo, es recomendable cuando no se dispone de información suficiente para la toma de decisiones o es necesario, para nuestra investigación, recoger opiniones consensuadas y representativas de un colectivo de individuos.(Reguant Álvarez & Torrado Fonseca, 2016)

Este método utiliza como fuente de información un grupo de personas a las que se supone un conocimiento elevado en la materia que se va a tratar. Su desarrollo tiene que garantizar el anonimato.


Se presenta un cuestionario el cual consta de 14 criterios que deben ser ordenados a juicio de cada uno de los expertos seleccionados, del más al menos importante, en relación a que tanto afecte, dificulte o limite la gestión del mantenimiento en la entidad.

Una vez hecho esto se agregan a un Excel, el cual a partir del análisis de datos permite conocer las principales deficiencias y/o dificultades principales que afectan la Gestión del mantenimiento.

2.7.3 Diagrama de Ishikawa

El diagrama de Ishikawa o diagrama causa-efecto, conocido popularmente con el nombre de espina de pescado (por su forma) es una herramienta que ayuda a estructurar la información ayudando a dar claridad, mediante un esquema gráfico, de las causas que producen un problema, pero en sí no identifica la causa raíz. (Valenzuela, 2000)

Esta herramienta de análisis nos permite obtener un cuadro, detallado y de fácil visualización, de las causas que pueden originar un determinado problema. Suele aplicarse a la investigación de las causas de un problema, mediante la incorporación de opiniones de un grupo de personas directa o indirectamente relacionadas con el mismo. Por ello, está considerada como una de las herramientas básicas de la calidad, siendo una de las más utilizadas, sencillas y que ofrecen mejores resultados.

Ishikawa propuso 8 pasos para la realización de estos diagramas:

- Identificar el resultado insatisfactorio que queremos eliminar, o sea, el efecto o problema.
- 2. Situarlo en la parte derecha del diagrama, de la forma más clara posible y dibujar una flecha horizontal que apunte hacia él.
- 3. Determinar todos los factores o causas principales que contribuyen a que se produzca ese efecto indeseado. En los procesos productivos es frecuente utilizar unos factores principales de tipo genérico denominados las 6M: materiales, mano de obra, métodos de trabajo, maquinaria, medio ambiente y mantenimiento. En los problemas de servicios son de utilidad: personal, suministros, procedimientos, puestos de trabajo y clientes. Estos factores principales no constituyen un elemento inmutable y pueden ser modificados según cada caso.
- Situar los factores principales como ramas principales o espinas de la flecha horizontal.
- 5. Identificar las subcausas o causas de segundo nivel, que son aquellas que motivan cada una de las causas o factores principales.

- 6. Escribir estas subcausas en ramas de las ramas principales que les correspondan. El proceso seguiría descendiendo el nivel de las causas hasta encontrar todas las causas más probables.
- 7. Analizar a conciencia el diagrama, evaluando si se han identificado todas las causas (sobre todo si son relevantes), y someterlo a consideración de todos los posibles cambios y mejoras que fueran necesarios.
- 8. Seleccionar las causas más probables y valorar el grado de incidencia global que tienen sobre el efecto, lo que permitirá sacar conclusiones finales y aportar las soluciones más aconsejables para resolver y controlar el efecto estudiado.

2.7.4 La encuesta

La técnica de encuesta es ampliamente utilizada como procedimiento de investigación ya que permite obtener y elaborar datos de modo rápido y eficaz.

Según (Anguita et al., 2003) y (Grasso, 2006)

Es un procedimiento dentro de la investigación cuantitativa en la que el investigador recopila información mediante un cuestionario previamente diseñado, sin modificar el entorno ni el fenómeno donde se recoge la información ya sea para entregarlo de forma de tríptico, gráfica, tabla o escrita. Los datos se obtienen realizando un conjunto de preguntas normalizadas dirigidas a una muestra representativa. Es un método de investigación asociado al empleo de varias técnicas e instrumentos de recolección de datos, como son: la entrevista y el cuestionario, los test, etc.

Pueden ser de dos tipos: de **respuesta abierta**, en estas encuestas se le pide al interrogado que responda el mismo a la pregunta formulada. Esto le otorga mayor libertad al entrevistado y al mismo tiempo posibilitan adquirir respuestas más profundas así como también preguntar sobre el porqué y como de las preguntas realizadas. Por otro lado, permite adquirir respuestas que no habían sido tenidas en cuenta a la hora de hacer

los formularios y pueden crear así relaciones nuevas con otras variables y respuestas, o de **respuesta cerrada**, en estas los encuestados deben elegir para responder una de las opciones que se presentan en un listado que formularon los investigadores. Esta manera de encuestar da como resultado respuestas más fáciles de cuantificar y de carácter uniforme. El problema que pueden presentar estas encuestas es que no se tenga en el listado una opción que coincida con la respuesta que se quiera dar, por esto lo ideal es siempre agregar la opción "otros".

2.7.5 La entrevista

La entrevista se define como el método empírico, basado en la comunicación interpersonal establecida entre el investigador y el sujeto o los sujetos de estudio, para obtener respuestas verbales a las interrogantes planteadas sobre el problema. (Avila et al., 2020)

Es una técnica y, como tal, tenemos que situarla en el marco más amplio que le da sentido. En el caso de la entrevista realizada en historia oral y en la investigación biográfico-narrativa1, la entrevista nos remite al tópico trabajado y a los objetivos de la investigación o intervención.

Resulta fundamental comprender bien la enorme variedad de propósitos, contextos institucionales y diseños que adoptan los proyectos concretos de historia oral y de historias de vida para captar mejor los diferentes usos de la entrevista como herramienta de conocimiento, investigación, testimonio e intervención social (entrevista).

CAPÍTULO 3 ANÁLISIS DE LOS RESULTADOS

3.1 Análisis y resultados de los métodos

3.1.1 Resultado del método de expertos

Después de aplicado el método experto (ver anexo 3) fueron detectados como problemas de mayor relevancia:

- ❖ La falta de recursos para desarrollar el trabajo
- Ll insuficiente financiamiento para la gestión
- ❖ La falta de indicadores asociados a la gestión del mantenimiento
- * Extrema insatisfacción con el salario
- Insuficiente aplicación del mantenimiento preventivo
- Falta del enfoque de proceso a nivel organizacional
- Malas condiciones laborales
- Enfoque reactivo en la gestión

Existen otros aspectos que afectan en menor medida la gestión del mantenimiento en la UEB estos son que no todo el personal de mantenimiento está calificado para ese puesto, las condiciones de almacenamiento y logística no son las mejores debido a la falta de recursos que atraviesa el país en la actualidad, además del deterioro que sufre el inmueble y sus redes.

A pesar de esto, con de la aplicación de este método se encontraron diferentes aspectos positivos; la empresa cuenta con una plantilla completa, la dirección de la empresa, a todos sus niveles, tiene pleno conocimiento del papel que juega el mantenimiento en la gestión del proceso asistencial pues en los planes de capacitación está prevista la gestión de mantenimiento.

3.1.2 Resultados de la entrevista

Este método se aplicó a un grupo del personal cualificado de la empresa en las diferentes áreas que conforman la UEB de Alquiler de equipos perteneciente a la UBS Equivar, obteniendo como resultado que las principales deficiencias en la entidad son las condiciones del área de trabajo tanto suyas como las de sus subordinados, por las cuales los jefes no se preocupan todo lo que deberían para mejorarlas, además de que no cuentan con los equipos y herramientas necesarias para realizar su trabajo debido a la falta de recursos que atraviesa la empresa y el país.

Los encuestados no están contentos con su salario pues consideran que ni el suyo ni el de sus subordinados están de acorde al trabajo que realizan, ni les permite satisfacer sus necesidades tanto personales como familiares y piensan que no es justo, partiendo de la labor que realizan, comparado con el de otros.

Otro aspecto a destacar es que en algunos casos la información necesaria para realizar algún que otro tipo de trabajo no les llega de forma correcta o en el tiempo adecuado.

Sin embargo están satisfechos con su trabajo pues lo consideran muy interesante, y se sienten orgullosos de la labor que realizan. Todo esto debido a que cuentan con la preparación necesaria para llevarlo a cabo correctamente pues son personas de vasta experiencia y calificación.

3.1.3 Resultado de la Evaluación y Control de la Gestión del Mantenimiento.

Se utiliza para este diagnóstico el método de Evaluación y Control para la Gestión del Mantenimiento del Máster Emilio Fernández Arenas, basado en la determinación del índice general de gestión de mantenimiento (IGGM) a partir del cálculo de aspectos y sub aspectos.

Se realiza entrevista con el jefe de mantenimiento de la instalación donde se llena un cuestionario previamente definido en el método que se aplica (ver anexo 2) para obtener la información primaria

Esta información se introduce en las hojas de cálculo de Excel determinando el valor de cada uno de los sub aspectos y a su vez estos definen el Índice General de Gestión de Mantenimiento de la entidad.

A continuación se reflejan en tablas los resultados obtenidos a partir de la aplicación de dicho procedimiento permitiendo así, como su nombre lo indica, evaluar y controlar la gestión del mantenimiento, en las diferentes áreas de SSTT de la UBS Equivar.

Índice general de la gestión del mantenimiento IGGM = 76,35%

Tabla 3.1 Resultado de la evaluación de los aspectos del método

Α	Aspectos Principales	V. Saaty	Evaluación	Ponderación
A1	Información y Logística	0,144	7,188	1,035
A2	Planificación de la Programación	0,209	8,146	1,703
А3	Efectividad de los Mantenimientos	0,114	6,800	0,775
A4	Costos	0,116	7,077	0,821
A5	CCHH y protección	0,098	8,336	0,817
A6	Informatización	0,036	8,991	0,324
A7	Medio Ambiente	0,125	9,009	1,126
A8	Cliente final	0,157	7,667	1,204
	ı		I	7,804

Tabla 3.2 Resultados de la evaluación de los subaspectos de información y logística.

Sub	Aspectos	V.		
A1	Información y Logística	Saaty	Evaluación	Ponderación
1,1	Control del universo de	0,08	7	0,539
1,2	Control de las áreas y equipos	0,18	7	1,239
1,3	Control de las características	0,18	6	1,062

1,4	Control del Valor de compra.	0,07	10	0,710
1,5	Control del proveedor.	0,04	6	0,252
1,6	Control de terceros.	0,07	9	0,612
1,7	Control del presupuesto.	0,16	7	1,099
1,8	Control de los RRHH	0,07	8	0,520
1,9	Control recursos y logística almacén	0,17	7	1,155

7,188

Tabla 3.3 Resultados de la evaluación de los subaspectos de sistemas de mantenimientos, planificación y programación

Su	Sub Aspectos			
A2	Planificación de la Programación	V. Saaty	Evaluación	Ponderación
2,1	Control del tipo de organización	0,16	7	1,092
2,2	Control de tipos de mtto por áreas y	0,17	9	1,494
2,3	Control estado de los planes de mtto.	0,17	10	1,660
2,4	Control de órdenes de trabajo	0,04	10	0,440
2,5	Control del personal	0,04	8	0,344
2,6	Control de los tiempos de paro.	0,05	8	0,368
2,7	Control de los modos de fallos y	0,17	7	1,162
2,8	Control de los tiempos de	0,05	9	0,459
2,9	Diseño y control de señales alarmas.	0,16	7	1,127

8,146

Tabla 3.4 Resultados de la evaluación de los subaspectos de Eficacia y efectividad de la planificación de los mantenimientos.

Sub	Aspectos			
А3	Efectividad de los Mantenimientos	V. Saaty	Evaluación	Ponderación
3,1	Disponibilidad del equipo.	0,4	6	2,400
3,2	Disponibilidad del área.	0,4	8	3,200
3,3	Aprovechamiento del equipo/área	0,2	6	1,200

6,800

Tabla 3.5 Resultados de la evaluación de los subaspectos de Costos.

S	Sub Aspectos			
A4	Costos	Saaty	Evaluación	Ponderación
4,1	Personal propio/Costo SSTT	0,243	7	1,701
4,2	Material/Costo SSTT	0,071	6	0,426
4,3	Mano de obra externa/Costo SSTT	0,192	7	1,344
4,4	Inmovilizado repuestos/Costos SSTT	0,071	6	0,426
4,5	Costos SSTT/Valor de Ventas	0,212	8	1,696
4,6	Costos SSTT/Habitación	0,212	7	1,484

7,077

Tabla 3.6 Resultados de la evaluación de los subaspectos de capital humano en el área de SSTT y la protección de estos.

Sub Aspectos		V.		
A5	CCHH y protección	Saaty	Evaluación	Ponderación
5,1	Capacitación del personal de	0,196	9	1,764

	SSTT.			
5,2	Fluctuación del personal de SSTT.	0,219	8	1,752
5,3	Índice de frecuencias de accidentes	0,14	9	1,260
5,4	Definición de riesgos.	0,072	8	0,576
5,5	Medidas de protección en base riesgos	0,074	8	0,592
5,6	Aplica PGSBC y IS	0,299	8	2,392

8,336

Tabla 3.7 Resultados de la evaluación de los subaspectos de Informatización.

Sub Aspectos		V.		
A6	Informatización	Saaty	Evaluación	Ponderación
6,1	de la información técnica de mtto.	0,127	9	1,143
6,2	del sistema de mtto correctivo.	0,186	9	1,674
6,3	sist. de mtto. preventivo/predictivo.	0,141	9	1,269
6,4	sist. de paradas programadas.	0,083	9	0,747
6,5	seguimiento y control	0,255	9	2,295
6,6	Interfaces con otras aplicaciones.	0,055	9	0,495
6,7	Seguridad informática	0,152	9	1,368

8,991

Tabla 3.8 Resultados de la evaluación de los subaspectos de Medio Ambiente.

Sub Aspectos				
A7	Medio Ambiente	V. Saaty	Evaluación	Ponderación

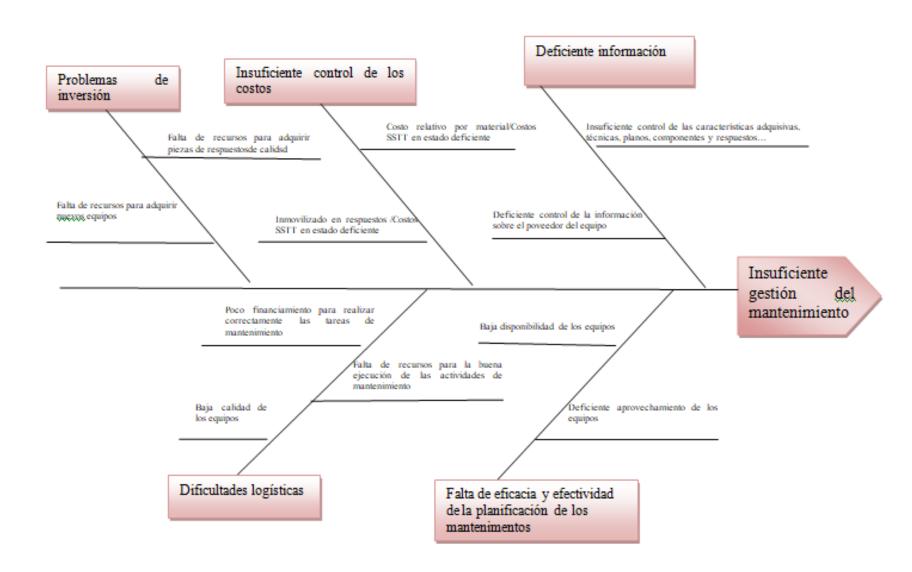
7,1	Reciclaje residuales líquidos	0,163	9	1,467
7,2	Reciclaje residuales sólidos	0,181	9	1,629
7,3	Recursos biológicos de control	0,157	9	1,413
7,4	Recursos químicos de control	0,124	9	1,116
7,5	Condición instalación Ecológico	0,376	9	3,384
	·		•	9,009

Tabla 3.9 Resultados de la evaluación de los subaspectos de opinión del cliente final.

Sub A	spectos	V.		
A8	Cliente final	Saaty	Evaluación	Ponderación
8,1	No de quejas vinculadas con SSTT	0,333	7	2,331
8,2	Índice de satisfacción del cliente	0,667	8	5,336

7,667

Después de realizar este método y mediante la evaluación de aspectos y subaspectos se obtuvo un valor de IGGM = 78,12 por lo que se puede concluir que la gestión del mantenimiento en la entidad es bueno, aunque con la presencia de algunas deficiencias que deben ser mejoradas.


1. Información y logística:

- Insuficiente control de las características adquisitivas, técnicas y de funcionamiento, planos, componentes y respuestas así como cualquier nota o aclaración relevante del equipo
- ❖ Deficiente control de la información sobre el proveedor del equipo.

- 2. Eficacia y efectividad de la planificación de los mantenimientos
 - Baja disponibilidad de los equipos
 - Deficiente aprovechamiento de los equipos
- 3. Insuficiente control de los costos.
 - ❖ Costo relativo por material/costo de SSTT en estado deficiente
 - ❖ Inmovilizado en repuestos/costo de SSTT en estado deficiente

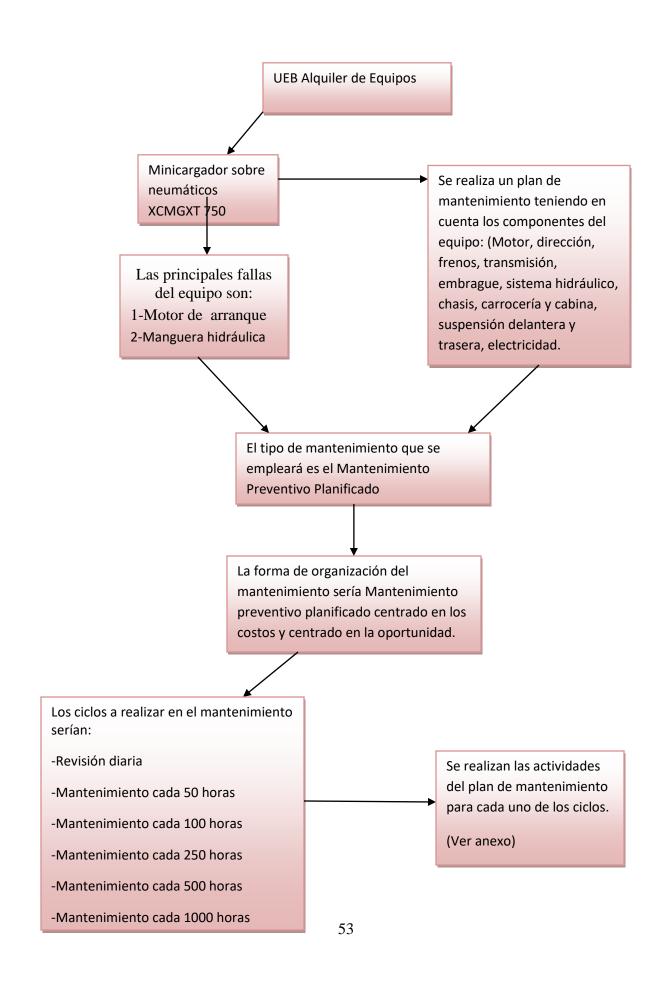
3.1.4 Diagrama Ishikawa

Se realiza un diagrama Causa-efecto para conocer a fondo las causas que originan las deficiencias en la gestión de la actividad de mantenimiento y poder actuar sobre ellas.

3.2 Planes de medidas de Gestión

La elaboración de un Plan de Medidas con el propósito de eliminar las deficiencias antes señaladas se centrará obviamente en la elaboración de los planes de mantenimientos y de manera conjunta la creación de la base de datos exigida por el software de gestión de mantenimiento existente y sin uso en la Empresa.

- Reestructurar la información y logística de la entidad logrando así una estrategia idónea para obtener la información lógica necesaria para la toma de decisiones relativas.
- 2. Crear todo un sistema de capacitación y recalificación para los trabajadores en búsqueda de lograr un trabajo con mayor calidad y efectividad.
- 3. Realizar un análisis relativo de los costos en el área de mantenimiento apoyándose en los planes de mantenimientos realizados, logrando así un control de una serie de índices relativos a los costos asociados a la misma.
- 4. Hacer un levantamiento de los equipos paralizados y los que no se les pueda permitir la actividad del mantenimiento proponerlos para baja técnica.
- Mantener todas las herramientas y equipos del taller en buen estado y limpieza dado que esto ayuda a su larga duración.
- 6. Articular el uso del software con los planes de mantenimientos realizados en este trabajo y las características de los equipos.


3.3 Confección de los Planes de Mantenimiento

El plan de mantenimiento es un documento que contiene el conjunto de tareas de mantenimiento programado que debemos realizar en una empresa para asegurar los niveles de disponibilidad que se hayan establecido. Es un documento vivo, pues sufre de continuas modificaciones, fruto del análisis de las incidencias que se van produciendo en la empresa y del análisis de los diversos indicadores de gestión. (Garrido 2010)

Luego de la aplicación de los distintos métodos y la posterior confección del listado de medida para resolver los problemas anteriormente planteados, se brinda un modelo metodológico de Plan de Mantenimiento, que sirva para la elaboración de planes específicos según marcas y tiempo de explotación. Los futuros planes quedarán singularizados en función de la experiencia de directivos y mecánicos así como por la base de datos estadísticos que se posea.

Teniendo en cuenta de manera general la gran variedad de equipos y piezas sustituidas debido a la falta de piezas de repuesto, sumándole el elevado tiempo de explotación de los mismos, se propone reducir los tiempos entre mantenimientos, logrando así una mayor fiabilidad.

A continuación se muestra una propuesta de un plan de mantenimiento para uno de los equipos de la empresa: un minicargador sobre neumáticos pues son equipos de mucha importancia por la cantidad de funciones que estos pueden realizar.

CONCLUSIONES

- ❖ En la actualidad cubana la actividad de mantenimiento se inclina, perniciosamente, hacia el uso excesivo de los mantenimientos correctivos y la base Alquiler de Equipos de Equivar no queda exenta de esta realidad.
- ❖ Con la aplicación de los métodos empleados, necesarios para evaluar y controlar la gestión del mantenimiento en las áreas de SSTT en la base Alquiler de equipos, se determinan que las causas que inciden negativamente en el mal funcionamiento de esta actividad son información, logística, inversión, costos y la eficacia y eficiencia de la aplicación de los planes de mantenimiento.
- Se elaboró un plan de medidas a partir de la evaluación de la gestión del mantenimiento en la entidad para corregir los problemas detectados.
- ❖ Se determinaron como ciclos de mantenimiento la revisión diaria, el mantenimiento cada 50 horas, cada 100 horas, cada 250 horas, cada 500 horas y cada 1000 horas.
- Se realizó la elaboración de un plan de mantenimiento para que queden como caso de estudio para la futura confección de los restantes.
- Los fallos principales son debido a los años de explotación en la mayoría de los casos.

RECOMENDACIONES

- Es necesario evaluar periódicamente la gestión del mantenimiento para la correcta implementación de los planes de mantenimiento de la base Alquiler de equipos de Equivar
- ❖ Elaborar los planes de mantenimiento por cada área y equipo de la Empresa, donde se lleven a cabo los tipos de mantenimiento preventivo y predictivo.
- Elaborar una estrategia para erradicar los problemas detectados mediante los métodos aplicados.

BIBLIOGRAFÍAS

- Anguita, J. C., Labrador, J. R., Campos, J. D., Casas Anguita, J., Repullo Labrador, J., & Donado Campos, J. (2003). La encuesta como técnica de investigación. Elaboración de cuestionarios y tratamiento estadístico de los datos (I). *Atención primaria*, 31(8), 527-538.
- Arenas, I. E. F. (2009). "Procedimiento de Evaluación y Control para Gestión del Mantenimiento en Hoteles, mediante Indicador General" [TESIS EN OPCIÓN AL GRADO DE MÁSTER EN ADMINISTRACIÓN DE EMPRESAS, Universidad de Matanzas]. Matanzas.
- Avila, H. F., González, M. M., & Licea, S. M. (2020). La entrevista y la encuesta: ¿ métodos o técnicas de indagación empírica? *Didasc@ lia: didáctica y educación ISSN 2224-2643*, 11(3), 62-79.
- Cruz, E. H. and E. N. Pérez (2001). "Sistema de cálculo de indicadores para el mantenimiento.//Indicators for maintenance calculation system." <u>Ingeniería Mecánica</u> **4**(4): 15-20.

Chuquilin Cabanillas, C. A., et al. "Propuesta de un plan de gestión de mantenimiento, para aumentar el valor de los activos de maquinaria pesada que se utiliza en proyectos de infraestructura vial, dentro de los lineamientos de la norma ISO 55001: 2014; caso de estudio: Empresa Constructora CHC Ingenieros SA."

De la Paz Martínez, E. M., et al. (2000). "Evolución del mantenimiento en Cuba y la participación de las universidades en el proceso." Revista CINTEX **8**: 48-53.

DELGADO, I. M. M. "ADMINISTRACIÓN DEL MANTENIMIENTO."

García Valdés, M., & Suárez Marín, M. (2013). El método Delphi para la consulta a expertos en la investigación científica. *Revista Cubana de Salud Pública*, 39(2), 253-267.

Garrido, S. G. (2010). <u>Organización y gestión integral de mantenimiento</u>, Ediciones Diaz de santos.

González, A. P., et al. (2007). <u>Mantenimiento mecánico de máquinas</u>, Publicacions de la Universitat Jaume I.

Grasso, L. (2006). *Encuestas. Elementos para su diseño y análisis*. Editorial Brujas.

Kruz, J. V. "HISTORIA Y EVOLUCIÓN DEL MANTENIMIENTO." <u>The editorial board bears no responsibility for the content of the abstracts and any possible errors.</u>: 7.

Moubray, J. (1997). "EL CAMINO HACIA EL RCM-MANTENIMIENTO CENTRADO EN CONFIABILIDAD." Sopore y CIA, LTDA: 1-2.

Olarte, W., et al. (2010). "Importancia del mantenimiento industrial dentro de los procesos de producción." <u>Scientia et technica</u> **16**(44): 354-356.

Pérez Rondón, F. A. (2021). "Conceptos generales en la gestión del mantenimiento industrial."

Reguant Álvarez, M., & Torrado Fonseca, M. (2016). El método delphi. *REIRE. Revista d'Innovació i Recerca en Educació, 2016, vol. 9, num. 2, p. 87-102*.

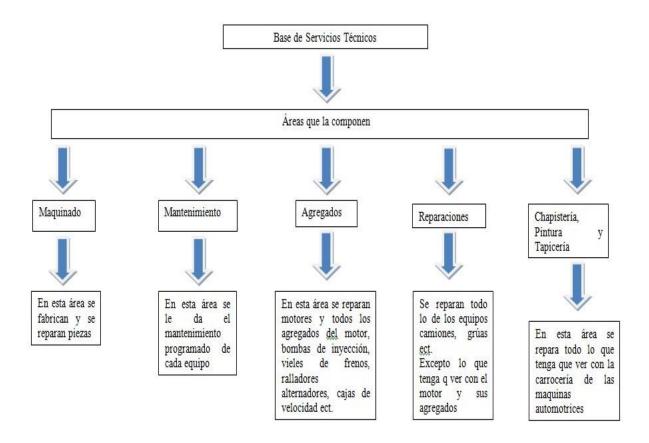
Rodríguez Pérez, C. (2017). Mantenimiento Basado en Riesgos para el motor de tecnología MAN B&W Diesel de la Central Eléctrica Sancti Spíritus, Universidad Central" Marta Abreu" de Las Villas. Facultad de Ingeniería

Sierra, J. G., et al. (2019). "Importancia del mantenimiento, aplicación a una industria textil y su evolución en eficiencia." <u>3c Tecnología: glosas de innovación aplicadas a la pyme</u> **8**(2): 50-67.

Useche, A. O., et al. (2013). "Gestión de mantenimiento en pymes industriales." <u>Revista</u> venezolana de gerencia **18**(61): 86-104.

Valenzuela, L. (2000). Diagrama de ishikawa. Santiago de Chile, Chile: UNAB.

Villanueva Barzola, M. R. (2021). Diagrama de ishikawa y rendimiento académico en comunicación en estudiantes de quinto de secundaria, Institución Educativa san Francisco, Paucarbamba.


Villegas, J. (2016). "Propuesta de mejora en la Gestión del Área de mantenimiento, para la optimizacion del desempeño de la empresa "MANFER SRL CONTRATISTAS GENERALES"." <u>Arequipa: Universidad Católica San Pablo. Obtenido de http://repositorio.</u> ucsp. edu. pe/handle/UCSP/15234.

Viveros, P., et al. (2013). "Propuesta de un modelo de gestión de mantenimiento y sus principales herramientas de apoyo." <u>Ingeniare</u>. Revista chilena de ingeniería **21**(1): 125-138.

Zambrano, E., et al. (2015). "Indicadores de gestión de mantenimiento en las instituciones públicas de educación superior del municipio Cabimas." <u>Telos</u> **17**(3): 495-511.

ANEXOS

Anexo 1: Áreas que componen la empresa Equivar y sus funciones

Anexo2: Tabla 2.1 Equipos, problemas y fallas problémicas

Equipos	Marcas	Fallas principales	Causas
Compresor Combustión/Remolque	ATLAS COPCO XAS 185 ATLAS COPCO XAS 97 ATLAS COPCO XAS	En todos los casos, al ser el mismo fabricante coincide que sus principales fallas son: 1-Coplin	1-Sobre esfuerzo o demasiado tiempo de trabajo 2-Años de explotación
Concretera eléctrica	97DD RIEGO H300E SHANTUIJZC 350	2-motor de arranque En todos los casos coinciden las fallas, coplin, pedestal y magneto	Años de explotación
Concretera de combustión	SHANTUIJZER 350 SILLA BIR	En ambos casos las fallas son las mismas, manguera hidráulica, pedestal y coplin.	Años de explotación
Montacargas de combustión	MONCAR MCD-25 HELICPCD-50	Los dos modelos sufren las mismas fallas, 1-Rotura de los sellos de los cilindros. 2-Desgaste de los neumáticos	1-La principal causa es la calidad del material que se utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas. 2-Esto pasa por el tipo de trabajo que realicen estos equipos, por el terreno en el que mueven
Manipulador Telescópico	MANITOU MT-932	1-Motor de arranque 2-Manguera de hidráulica 3-Sellos de cilindro	1-Años de explotación 2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla

		3-Pasa lo mismo que en el caso anterior
XCMG XC6 – 4517	1-Manguera hidráulica	1-Son equipos netamente hidráulicos y debido a los años
	2-Espejuelos de la bomba de aceite	de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
	3-Electrónica	2-Esto ocurre porque se usa un aceite incorrecto, fundamentalmente por la falta del producto en el país
		3- La falla se debe a que para poder acceder a su sistema y conocer el origen de su falla se debe hacer a través de un software q solo tiene el fabricante, es decir, debería venir un técnico de esa empresa.
MANITOU MRT 2150	Electrónica	Este equipo es giratorio, y es computarizado. La falla se debe a que para poder acceder a su sistema y conocer el origen de su falla se debe hacer a través de un software q solo tiene el fabricante, es decir, debería venir un técnico de esa empresa.
MANITOU MT 1840	1-Motor de arranque	1-Años de explotación
	2-Manguera hidráulica	2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
JCB 535-95	1-Motor de arranque	1-Años de explotación
	2-Manguera hidráulica	2-Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está

		3-Computadora	sometido sufre esta falla
			3-La falla se debe a que para poder acceder a su sistema y conocer el origen de su falla se debe hacer a través de un software q solo tiene el fabricante, es decir, debería venir un técnico de esa empresa.
Motovolquetas de combustión	AUSA 200 RM, AUSA 150 DH, AUSA D150 RM DUMEC PD 60 2RM	1-Sistema de dirección 2-Sistema de rodamiento	1-Problema de fabricante 2-Por lo que ocurre con el sistema de dirección, al ponerle peso, el rodamiento trabaja de manera forzada.
	PIQUERSA D-1500-AC	1-Transmisión	Si el chofer maneja a altas velocidades en caminos donde las condiciones del terreno no son buenas, y debido a la falta de grasas para engrasar estas transmisiones ocurren con frecuencia estas fallas
	SILLA 1200 NP	1-Transmisión 2-Frenos	1-Si el chofer maneja a altas velocidades en caminos donde las condiciones del terreno no son buenas, y
		3-Inyectores	debido a la falta de grasas para engrasar estas transmisiones ocurren con frecuencia estas fallas
			2-Años de explotación

			3-Falta de filtros
	TIAN SHENG FJZ 30	Motor de arranque	Años de explotación
	TOP MAC SD30S	Transmisión	Si el chofer maneja a altas velocidades en caminos donde las condiciones del terreno no son buenas, y debido a la
			falta de grasas para engrasar estas transmisiones ocurren
			con frecuencia estas fallas.
Motogenerador de combustión	YTO TO500 A-J	1-Computadora	Es un sistema computarizado y no rectifica la corriente
Grúas camión	KATO NK-110	1-Caja de velocidades	1-Años de explotación
		2-Motor de arranque	2-Años de explotación
	KC 3577/MAZ 5334	1-Cilindro de izaje	En ambos casos la principal causa de estos problemas son
		2-Bomba de agua	los años de explotación
	LUNA 2022B /	1-Slider de la bomba	1-Años de explotación
	PEGASO	2-Manguera hidráulica	2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
	LUNA GT/60/3180	1-Slider de la bomba	Años de explotación
		2-Manguera hidráulica	
		3-Alternador	

		4-Motor de arranque	
	SANY STC 200	1-Bomba de agua	Años de explotación
		2-Bomba de cloche	
Torre elevadora personal carga	GAOLI SC 120	Humedad en los componentes magnéticos	Esto se debe a las condiciones de trabajo
Excavadoras sobre neumáticos	JON YANG 210E JON YANG JYL621E	1-Sellos de los cilindros 2-Correa de distribución	1- La principal causa es la calidad del material que se utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se
		3-Se tupen los filtros	ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas. 2- Una avería en la bomba del agua. Un tensado inadecuado
			3-Por el entorno en que trabajan
Minicargadores sobre neumáticos	BOBCAT S250	Manguera hidráulica	Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
	XCMGXT 750	1-Motor de arranque	1-Años de explotación
		2-Manguera hidráulica	2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla

Retropala	AUSA RC5	1-Motor de arranque	1-Años de explotación
		2-Manguera hidráulica	2- Son equipos netamente hidráulicos y debido a los años
		3-Sello de los cilindros	de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla.
			3-La principal causa es la calidad del material que se
			utiliza para la realización de estos sellos en el Mercado
			informal en el cual por ciertas limitaciones, la empresa se
			ve obligada a comprar, una vez que sufre la rotura, no es
			del material idóneo para las condiciones en las que
			trabaja el equipo, el cual es sometido a muchas fuerzas.
	CATERPILLAR 428C	1-Manguera hidráulica	1-Son equipos netamente hidráulicos y debido a los años
		2-Sello de los cilindros	de explotación y a las fuerzas de trabajo a los que está
		2-Selio de los cilinaros	sometido sufre esta falla.
			2-La principal causa es la calidad del material que se
			utiliza para la realización de estos sellos en el Mercado
			informal en el cual por ciertas limitaciones, la empresa se
			ve obligada a comprar, una vez que sufre la rotura, no es
			del material idóneo para las condiciones en las que
			trabaja el equipo, el cual es sometido a muchas fuerzas.
	QUAN GONG WZ30-	1-Manguera hidráulica	1-Son equipos netamente hidráulicos y debido a los años
	25	2-Sello de los cilindros	de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla.
		3-Motor de arranque	2-La principal causa es la calidad del material que se

		utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas. 3-Años de explotación.
SINOMACH WZ30-25	Frenos	Años de explotación
VENIERI 8.23D	1-Sello de los cilindros 2-Manguera hidráulica 3-Pasador de la dirección	1-La principal causa es la calidad del material que se utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas 2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla. 3-Los bujes se hacen con un bronce que no es el correcto
YUTONG WZ30-25	1-Bomba de aceite	1-Años de explotación
	2-Manguera hidráulica	2- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está
	3-Sello de los cilindros	sometido sufre esta falla.
		3- La principal causa es la calidad del material que se

			utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas.
Tractor con otros aditamentos	TAINO/YUMZ 6KM	1-Manguera hidráulica 2-Sello de los cilindros de la palita 3-Problemas de soldadura	1-Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla 2-La principal causa es la calidad del material que se utiliza para la realización de estos sellos en el Mercado informal en el cual por ciertas limitaciones, la empresa se ve obligada a comprar, una vez que sufre la rotura, no es del material idóneo para las condiciones en las que trabaja el equipo, el cual es sometido a muchas fuerzas. 3-Años de explotación
Tractor sobre ruedas	FIAT 70-56 NEW BELARUS MTZ 80	1-Bomba de petróleo 2-Filtro de aceite No se rompe frecuentemente	1-Años de explotación 2-No hay para reponer
	YTO 1604 YTO MK654	Bomba de aceite	Años de explotación
	YUMZ 6KM	Bomba de aceite	Años de explotación

Tractor multipropósito	JCB 1CX	Manguera hidráulica	Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
	QUAN GONG 700	1-Motor de arranque	1-Años de explotación
		2-Alternador	2-Años de explotación
		3-Manguera hidráulica	3-Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla
	SINOMACH 275F	1-Electoválvula	Problema de diseño del fabricante
		2-Poblema eléctrico	
	YTO TY 375S	1-Eje	1-Problema de fabricante. Los ejes se parten al parecer la
		2-Rodamiento	aleación de metal con que hicieron los ejes no es la idónea para las condiciones de trabajo a las que está
		3-Brazos hidráulicos	sometido el equipo en la empresa
		4-Manguera hidráulica	2-Problemas de diseño. No son de buena calidad, no así con el motor.
			3-problemas de diseño
			4- Son equipos netamente hidráulicos y debido a los años de explotación y a las fuerzas de trabajo a los que está sometido sufre esta falla. Problemas de diseño. Son

			equipos de baja calidad
	YUTONG 275F	1-Electroválvula	Problema de diseño del fabricante. Son equipos de baja
		2-Problema eléctrico	calidad
Carreta agrícola	PTS	No sufre rotura	
		frecuentemente	
Tanque de agua/Camión	HOWO QDZ5323GSS	1-Correa de distribución	1-Una avería en la bomba del agua. Un tensado
		2-Bomba de agua	inadecuado. No hay correa para reemplazar en el tiempo que indica el fabricante
			2-Problema de diseño. Son equipos de baja calidad
	ZIL 130/YUCHAI	1-Embrague	1-Es un motor adaptado y no resiste de la mejor a las
	YC6108Q		condiciones de trabajo del equipo. Años de explotación.
Camión plataforma-	KAMAZ 5320/YAMZ	1-Motor de arranque	1-Años de explotación.
plancha	236	2-buster de freno	2-Años de explotación
	ZIL 130/ HYUNDAI	Caja de velocidad	Años de explotación
	D4AE		
	ZIL 431517/ IVECO 8061	Caja de velocidad	Años de explotación
	ZIL 431517/ YUCHAI	Caja de velocidad	Años de explotación

	ZIL 431517/ NISSAN	Caja de velocidad	Años de explotación
Camión Plataforma - Autocargable	RENAULT CLR 230	No tiene rotura frecuente	
	MAN 18-264/WD615	1-Salidero de aire en el sistema de freno 2-Sistema de bomba de freno 3-Sistema de suspensión 4-Neumáticos	1-Por los años que tiene la tubería 2-Años de explotación, a veces no se trabaja con el líquido de freno que lleva, los sellos no son del material adecuado. 3-No hay piezas de repuesto 4-Se gastan por las condiciones de trabajo
Camión caja desmontable-Slug	HOWO QDZ5253ZXXZH	1-Correa de distribución 2-Bomba de agua 3-Sistema eléctrico	 1-Una avería en la bomba del agua. Un tensado inadecuado. 2-Años de explotación, ya terminó el tiempo de vida útil indicado por el fabricante y no hay para reponerla. 3-Años de explotación
	MERCEDES BENZ	1-Barra de transmisión	Es una barra de KAMAZ adaptada y al no ser la que fue diseñada para él sufre fallas, pues no tiene la misma resistencia
Taller de mecánica sobre camión	HOWO QDZ5193YX, HOWO QDZ5191YX	1-Correa de distribución 2- Bomba de agua	1-Una avería en la bomba del agua. Un tensado inadecuado 2Años de explotación, ya terminó el tiempo de vida útil

		indicado por el fabricante y no hay para reponerla.
ZIL 431517	Caja de velocidad	Años de explotación

Anexo 3: Equipos en inventario de equipos en UBS Equivar

CLASE: CO COMPRESOR COMBUSTION S/REMOLQU

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
822566 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321566	11508039	2013	Regular	Amarillo
822567 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321573	11508031	2013	Regular	Amarillo
822568 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321157	11508138	2013	Malo	Amarillo
822569 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321664	11508139	2013	Malo	Amarillo
822575 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321671	11508042	2013	Malo	Amarillo
822576 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321853	11508029	2013	Malo	Amarillo
822577 Gris	ATLAS COPCO XAS 185 92 B.COMPRES.		APP0321860	11508030	2013	Regular	Amarillo
827936 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP492994	12087542	2017	Regular	Amarillo
827937 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP493232	12090924	2017	Regular	Amarillo
827938 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP493428	12090921	2017	Regular	Amarillo
827939 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP493438	12090922	2017	Regular	Amarillo
827940 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP493448	12090926	2017	Regular	Amarillo
827941 Gris	ATLAS COPCO XAS97 92 B.COMPRES.		APP494041	12087541	2017	Regular	Amarillo
	ATLAS COPCO XAS97DD 92 B.COMPRES.		662506	11706805	2014	Malo	Amarillo

Total de Equipos COMPRESOR COMBUSTION 14

CLASE: CT CONCRETERA ELECTRICA

Colores

Secund Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
825217 RIEGO H300E Amarillo			1537310080 82 B.COMPL.	2016	Malo	Amarillo
826146 RIEGO H300E Amarillo			1537310042 82 B.COMPL.	2016	Malo	Amarillo
826147 RIEGO H300E Amarillo			1537310087 82 B.COMPL.	2016	Malo	Amarillo
826148 RIEGO H300E Amarillo			1537310095 82 B.COMPL.		Regular	Amarillo
826149 RIEGO H300E Amarillo			1537310081 82 B.COMPL.		Regular	Amarillo
825184 SHANTUI JZC 350 Amarillo		01761 82 B.COMPL		2015	Malo	Amarillo
825185 SHANTUI JZC 350 Amarillo		01764 82 B.COMPL		2015	Malo	Amarillo
Total de Equipos CONCRET	ERA ELECT	RICA		7		
CLASE: CTC CONCRETER Colores	RA DE COM	BUSTION				
Invent Marca - Modelo Secund Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	Chapa	Serie 01757 82 B.COMPL		A. Fab 2015	Est. Téc	Primar Amarillo
Secund Ubicación 825186 SHANTUI JZR 350	Chapa	01757		2015		Amarillo
Secund Ubicación 825186 SHANTUI JZR 350 Amarillo 822561 SILLA BIR 750	Chapa	01757 82 B.COMPL		2015	Malo	Amarillo Naranja
Secund Ubicación 825186 SHANTUI JZR 350 Amarillo 822561 SILLA BIR 750 Gris 82 B.COMPL. 822562 SILLA BIR 750	Chapa	01757 82 B.COMPL 15385	4327701990	2015	Malo Regular	Amarillo Naranja
Secund Ubicación 825186 SHANTUI JZR 350 Amarillo 822561 SILLA BIR 750 Gris 82 B.COMPL. 822562 SILLA BIR 750 Gris 82 B.COMPL. 822563 SILLA BIR 750 Gris 82 B.COMPL.		01757 82 B.COMPL 15385 15386	4327701990 4327701920	2015 2013 2013	Malo Regular Regular	Amarillo Naranja Naranja

Serie

Motor A. Fab Est. Téc Primar

Chapa

Marca - Modelo

Invent

Secund Ubicación

826517 Blanco	MONCAR MCD-25 80 BTS ALMEST	2520170070	15182534	2016	Regular	Azul
826519 Negro	HELI CPCD-50 82 B.COMPL.	10501R6163	106134	2016	Bueno	Naranja
826520 Negro	HELI CPCD-50 82 B.COMPL.	1050IR6267	106120	2016	Bueno	Naranja
826521 Negro	HELI CPCD-50 82 B.COMPL.	10501R6269	106138	2016	Bueno	Naranja
	HELI CPC D25 a69 BTS ALMACENES	M8262WS1	244075	2016	Bueno	Naranja

Total de Equipos MONTACARGAS DE COMBUSTION 5

CLASE: MTE MANIPULADOR TELESCOPICO

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	MANITOU MT-932 80 BTS ALMEST		183016	U305341K	2003	Regular	Rojo
	MANITOU MT-932 80 BTS ALMEST		174960	U248621	2002	Р Ваја	Rojo
826151 Amarille	XCMG XC6-4517 o		01671 80 BTS ALM	73252601 EST	2016	Regular	Amarillo
826152 Amarille	XCMG XC6-4517 o		01672 80 BTS ALM	73249939 EST	2016	Regular	Amarillo
822565 Negro	MANITOU MRT 2150 82 B.COMPL.		765305	943712	2013	Regular	Rojo
718950 Negro	MANITOU MT 1840 82 B.COMPL.		12255230	435439	2008	Regular	Rojo
718941 Negro	MANITOU MT-1740 82 B.COMPL.		1185584	U54500K	2003	Malo	Rojo
000050 Negro	JCB 535-95 EMPRESTUR		178183	U2235413	2013	Regular	Amarillo

Total de Equipos MANIPULADOR TELESCOPICO 8

CLASE: MV MOTOVOLQUETAS DE COMBUSTION

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
718933 Gris	AUSA 200 RM 80 BTS ALMEST		15421103	4297710	1999	Malo	Naranja
	AUSA 150 DH 82 B.COMPL.		09249455	1904109	2006	Regular	Naranja
727483 Gris	AUSA 150 DH 82 B.COMPL.		092.29806	1903315	2002	Regular	Naranja
727487 Azul	AUSA 150 DH 82 B.COMPL.		092.29671	A 58491	2002	Malo	Amarillo
727488 Gris	AUSA 150 DH 82 B.COMPL.		092.34583	1904005	2003	Regular	Naranja
	AUSA 150 DH 82 B.COMPL.		09248057	1900432	2006	Malo	Naranja
	AUSA D 150 RM 82 B.COMPL.		09251396	1903998	2006	Malo	Naranja
	AUSA D 150 RM 82 B.COMPL.		09252973	1901869	2007	Regular	Naranja
	AUSA D 150 RM 82 B.COMPL.		0925857	1904120	2008	Regular	Naranja
718443 Amarillo	DUMEC PD 60 2RM		3169 82 B.COMPL	1904073	2008	Regular	Amarillo
718444 Gris	DUMEC PD 60 2RM 82 B.COMPL.		3170	1904118	2008	Malo	Amarillo
	PIQUERSA D-1500-AC 82 B.COMPL.		2212000761	2604041	2012	Regular	Naranja
	PIQUERSA D-1500-AC 82 B.COMPL.		2212000772	100133	2012	Regular	Verde
	SILLA 1200 SNP a82 B.COMPL.		5075	4704500230	2017	Malo	Naranja
	SILLA 1200 SNP a82 B.COMPL.		5076	4704500260	2017	Malo	Naranja
	TIAN SHENG FJZ 30 82 B.COMPL.		160525001	16043049G	2016	Р Ваја	Amarillo
	TIAN SHENG FJZ 30 82 B.COMPL.		160525007	16043055G	2016	Malo	Amarillo

826155 Negro	TIAN SHENG FJZ 30 82 B.COMPL.	160525002	16043050G	2016	Regular	Amarillo
822589 Gris	TOPMAC SD30S 82 B.COMPL.	14411032	1404105	2014	Regular	Amarillo
822590 Gris	TOPMAC SD30S 82 B.COMPL.	14411033	1404106	2014	Regular	Amarillo
822591 Gris	TOPMAC SD30S 82 B.COMPL.	14411034	1404119	2014	Regular	Amarillo
822592 Gris	TOPMAC SD30S 82 B.COMPL.	14411036	1404111	2014	Regular	Amarillo
822593 Gris	TOPMAC SD30S 82 B.COMPL.	14411037	1404118	2014	Regular	Amarillo
822594 Gris	TOPMAC SD30S 82 B.COMPL.	14411039	1404103	2014	Malo	Amarillo
822595 Gris	TOPMAC SD30S 82 B.COMPL.	14411044	1404108	2014	Malo	Amarillo

25

Total de Equipos MOTOVOLQUETAS DE

CLASE: SE TRANSFORMADOR ELECTRICO

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
709839 Negro	NT 250 93 AGREG.Y LIGEROS		41217		1994	Malo	Rojo
709731 Azul	TDM 4001 T2 65 B.CHAP.Y TAPIC.		4891		1990	Regular	Azul
693368 Azul	GARSOL 400 RM 84 PES.Y COMPL		22353		1988	Regular	Azul
	CEM SUC 500 49 B.MAQ.		3225		1985	Regular	Verde
709836 Negro	NT 250 49 B.MAQ.		41216		1994	Regular	Rojo
709382 Azul	TDM 317-T2 62 B.MTTO.		38611717		1990	Regular	Azul
694100 Amarillo			627102 79 B.MTTO.REF	P.OMN	1985	Malo	Amarillo

Total de Equipos TRANSFORMADOR ELECTRICO 7

CLASE: SEC MOTO-GENERADOR DE COMBUSTION

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar Secund **Ubicación** 828244 YTO TO500A-J 2018 Regular Verde TO56947405 180340156 Verde 82 B.COMPL. 828246 YTO TO500A-J 2018 Regular Verde TO56947422 180340139 Verde 82 B.COMPL. 828245 YTO TO500A-J TO56947417 180340142 2018 Regular Verde Verde 20 REP. MTTO. CARG

Total de Equipos MOTO-GENERADOR DE 3

CLASE: TEP TORRE ELEVADORA PERSONAL CARGA

Colores

A. Fab Est. Téc Primar Invent Marca - Modelo Chapa Serie Motor **Ubicación** Secund 2018 Bueno 827951 GAOLI SC 120 Rojo 82 B.COMPL. Gris 827952 GAOLI SC 120 2018 Bueno Rojo Gris 82 B.COMPL. 828242 GAOLI SC 120 2018 Bueno Rojo Gris 82 B.COMPL. 828243 GAOLI SC 120 2018 Bueno Rojo 82 B.COMPL. Gris

Total de Equipos TORRE ELEVADORA PERSONAL 4

CLASE: GC GRUAS CAMION

Colores

Invent Marca - Modelo A. Fab Est. Téc Primar Chapa Serie Motor Secund Ubicación 727477 KATO NK-110 B172130 10320118 1984 Malo Amarillo 532155000A Amarillo 89 B.DE IZAJE 708532 KC 3577/MAZ 5334 B016922 437985 1990 Malo 7786 Azul Amarillo 89 B.DE IZAJE 539289 LUNA 2022B/PEGASO B173419 J6L 0916 HX 00749 1984 Malo Blanco Amarillo 89 B.DE IZAJE

693421 LUNA 2022B/PEG Amarillo	ASO B016618 89 B.DE IZ	J6FL0903 ZAJE	HX00647	1988	Malo	Blanco
696150 LUNA GT/60/3180 Amarillo	B206011 89 B.DE IZ	0009JLP ZAJE	16253	1987	Regular	Amarillo
822586 SANY STC200 Negro 89 B.DE IZAJE	B126258	6E2002255	7867404	2014	Regular	Amarillo
822587 SANY STC200 Negro 89 B.DE IZAJE	B126257	E2002256	78065573	2014	Regular	Amarillo
Total de Equipos G	RUAS CAMION			7		
CLASE: GN EXC Colores	CAVADORAS S/NEU	MATICOS				
Invent Marca - Mod Secund Ubicación	delo Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
820564 JONYANG 210E Negro 82 B.COMPL.		1420366		2010	Regular	Rojo
825209 JONYANG JYL62 ² Naranja82 B.COMPL.	1E	1280110	22119502	2015	Bueno	Naranja
826157 JONYANG JYL62 ^r Negro 82 B.COMPL.	1E	1280137		2015	Regular	Naranja
Total de Equipos E	XCAVADORAS S/NE	EUMATICOS		3		
CLASE: GSN GR Colores	UAS SOBRE NEUMA	ATICOS				
Invent Marca - Mod Secund Ubicación	delo Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
548049 KC 5363-A Amarillo		2423 89 B.DE IZA	JE	1985	Malo	Amarillo
633739 KC 5363-A Amarillo		970 89 B.DE IZA	JE	1985	P Baja	Amarillo
Total de Equipos G	RUAS SOBRE NEUN	MATICOS		2		
CLASE: GT GR Colores	UAS TORRES					
Invent Marca - Mod Secund Ubicación	delo Chapa	Serie	Motor	A. Fab	Est. Téc	Primar

727430 BENAZZATO 17-22-700 3503 1998 Malo Rojo

Gris 89 B.DE IZAJE

Total de Equipos GRUAS TORRES 1

CLASE: MCG MINI CARGADORES S/NEUMATICOS

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
718939 Negro	BOBCAT S250 80 BTS ALMEST		521411354	3G4562	2003	Malo	Blanco
727495 Negro	JCB ROBOT 190 82 B.COMPL.		264957N	14229	2006	Malo	Amarillo
	XCMG XT 750 82 B.COMPL.		10272	S8393	2014	Malo	Amarillo
822598 Negro	XCMG XT 750 82 B.COMPL.		10273	S8295	2014	Regular	Amarillo
822599 Gris	XCMG XT 750 82 B.COMPL.		10271	S7983	2014	Malo	Naranja
822600 Gris	XCMG XT 750 82 B.COMPL.		10269	S8160	2014	Malo	Naranja

Total de Equipos MINI CARGADORES S/NEUMATICOS 6

CLASE: RPA RETROPALA

-	nvent Secund	Marca - Modelo Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
		AUSA RC5 32 B.COMPL.		226HE02068	075776	2013	Malo	Naranja
		CATERPILLAR 428C 32 B.COMPL.		2CR16766	9RM02682	1999	Regular	Naranja
		QUAN GONG WZ30-25 32 B.COMPL.		163025276	78295027	2016	Malo	Amarillo
		SINOMACH WZ 30-25 32 B.COMPL.		160341	J000213	2016	Regular	Amarillo

VENIERI 8.23 D	25828	U574813X	2013	Regular	Naranja
82 B.COMPL.					
YUTONG WZ30-25	73155449		2015	Regular	Amarillo
82 B.COMPL.					
	82 B.COMPL. YUTONG WZ30-25	82 B.COMPL. YUTONG WZ30-25 73155449	82 B.COMPL. YUTONG WZ30-25 73155449	82 B.COMPL. YUTONG WZ30-25 73155449 2015	82 B.COMPL. YUTONG WZ30-25 73155449 2015 Regular

6

Total de Equipos RETROPALA

CLASE: TA TRACTOR CON OTROS ADITAMENTOS

Colores

Invent Secund	Marca - Modelo Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
693020 TA Amarillo	INO/YUMZ 6 KM	08M326 82 B.COM	667486 PL.	9110067	1987	Malo	Rojo
703368 TA Amarillo	INO/YUMZ 6 KM	08M309 82 B.COM	649191 PL.	376884	1990	Regular	Rojo
694240 TA Amarillo	INO/YUMZ 6 KM	08M350 84 PES.Y	S/N COMPL	430458T	1982	Regular	Rojo

Total de Equipos TRACTOR CON OTROS 3

CLASE: TG TRACTOR S/RUEDAS

Invent		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
Secund	d Ubicación						
718936 Negro	FIAT 70-56 NEW 80 BTS ALMEST	08M339	1126436	6200702425	2001	Malo	Rojo
708594 Rojo	BELARUS MTZ 80 82 B.COMPL.	08M340	710575	641969	1990	Regular	Rojo
825187 Negro	YTO 1604 82 B.COMPL.	08M335	31590945	9155007935	2015	Bueno	Rojo
	YTO 1604 82 B.COMPL.	08M336	31590946	9155007902	2015	Bueno	Rojo
	YTO MK654 82 B.COMPL.	08M172	41715743	XB1706642	2017	Bueno	Rojo
827933 Negro	YTO MK654 82 B.COMPL.	08M187	41715747	XB1706644	2017	Bueno	Rojo
827934 Negro	YTO MK654 82 B.COMPL.	08M193	41715748	XB17006696	2017	Bueno	Rojo
827935	YTO MK654	08M412	41715749	XB1706650	2017	Bueno	Rojo

Negro 82 B.COMPL.						
679182 YUMZ 6 AM Blanco 82 B.COMPL.	08M479	550137	382527	1987	Regular	Rojo
539727 YUMZ 6 KM Blanco 82 B.COMPL.	08M310	592311	8050738T	1990	Regular	Rojo
539739 YUMZ 6 KM Blanco 82 B.COMPL.	08M304	560511	394903	1988	Regular	Rojo
693402 YUMZ 6 KM Amarillo	08M346 82 B.COM	565030 IPL.	394900	1988	Regular	Rojo
694062 YUMZ 6 KM Blanco 82 B.COMPL.	08M342	S/N	8070581T	1982	Regular	Rojo
703086 YUMZ 6 KM Blanco 82 B.COMPL.	08M344	322007	241258	1989	Р Ваја	Rojo
703088 YUMZ 6 KM Rojo 82 B.COMPL.	08M318	4478	095087	1989	Regular	Rojo
Total de Equipos TRA	CTOR S/RUEDAS			15		
CLASE: TMP TRAC Colores	TOR MULTIPROP	OSITO				
		OSITO Serie	Motor	A. Fab	Est. Téc	: Primar
Colores Invent Marca - Model			Motor 925676P		Est. Téc Regular	
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL.		Serie 81299083				
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL. CLASE: TMP TRACE Colores Invent Marca - Model	o Chapa TOR MULTIPROP	Serie 81299083		2008	Regular	
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL. CLASE: TMP TRACE Colores Invent Marca - Model Secund Ubicación	o Chapa TOR MULTIPROP	Serie 81299083 POSITO Serie	925676P <i>Motor</i>	2008 A. Fab	Regular Est. Téc	Amarillo Primar
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL. CLASE: TMP TRACE Colores Invent Marca - Model	o Chapa TOR MULTIPROP	Serie 81299083 POSITO	925676P	2008	Regular Est. Téc	Amarillo
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL. CLASE: TMP TRACE Colores Invent Marca - Model Secund Ubicación 727496 JCB 1 CX	o Chapa TOR MULTIPROP	Serie 81299083 POSITO Serie	925676P <i>Motor</i>	2008 A. Fab	Regular Est. Téc	Amarillo Primar
Colores Invent Marca - Model Secund Ubicación 718947 JCB 1 CX Negro 82 B.COMPL. CLASE: TMP TRACE Colores Invent Marca - Model Secund Ubicación 727496 JCB 1 CX Negro 82 B.COMPL. 826159 QUAN GONG 700	o Chapa TOR MULTIPROP	Serie 81299083 POSITO Serie F06582R065	925676P <i>Motor</i> 938891M 281369 70114788	2008 A. Fab 2006 2016	Regular Est. Téc	Amarillo Amarillo Amarillo

180516

70115733

2018 Malo

Blanco

828251 YTO TY375S

Blanco 82 B.COMPL.						
828425 YTO TY375S Blanco 82 B.COMPL.		180532	70115727	2018	Regular	Blanco
828426 YTO TY375S Blanco 82 B.COMPL.		180535	70115731	2018	P Baja	Blanco
826158 YUTONG 275F Negro 82 B.COMPL.		151206	282096	2015	Malo	Amarillo
Total de Equipos TRACTOR	R MULTIPRO	OPOSITO		9		
CLASE: AU AUTOMOV Colores	IL					
Invent Marca - Modelo Secund Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
727494 CITROEN BERLINGO Rojo 77 BASE ALQ.EQ.	B016552	D593303810	3U55316043	2006	Regular	Rojo
727408 LADA 2106 Negro 11D. CONT.FIN.	B016515	3723456	0780122	1990	Regular	Negro
727492 CITROEN BERLINGO Rojo 15 DIR.EQUIVAR	B016483	169520	84852315	2005	Malo	Rojo
827946 GEELY CK 1.5 Gris 15 DIR.EQUIVAR	B206034	503452	210798	2014	Bueno	Gris
634865 LADA 2105 Azul 13 D.EQUIPOS	B224478	0024955	0780000	1985	Regular	Azul
718945 CITROEN BERLINGO Gris 19 DIR.TRANSP.CARG	B157919	YB8J026405	0433109	2007	Regular	Gris
Total de Equipos AUTOMO	OVIL			6		
CLASE: JP AUTO RURA Colores	AL-JEEP					

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
686897 Azul	UAZ 315127-01/GW4D28 80 BTS ALMEST	B025274	K0200691	G010944	1988	Regular	Azul
708534 Azul	ARO 244-D/HYUNDAI D4 77 BASE ALQ.EQ.	B201843	9613	001114	2000	Malo	Azul
539878 Azul	LADA NIVA 2121 17 DIR.B.SERV.TEC.	B016507	1062203	0937195	1987	Regular	Azul

727410 Azul	LADA NIVA 2121 18 DIR.TRANSP.	B125183	1069924	0780119	1996	Malo	Azul
	UAZ 469 B/HYUNDAI D4 94 DIR.LOGISTICA	B016925	1001242	010948	1980	Regular	Verde
693048 Azul	UAZ 315127/HYUNDAI D4 12 D CAP. HUM.	B202061	RVM0002541	0311133	1987	Regular	Azul
694334 Azul	LADA NIVA 2121 15 DIR.EQUIVAR	B080912	51788	0780559	1989	Regular	Azul
703302 Azul	ARO 244-D/HYUNDAI D4 16 D. OPERACIO	B016576	9629	G010701	1990	Malo	Azul
Total	de Equipos AUTO RU	RAL-JEEP			8		
CLASE Colore		ETA					
Invent		Chapa	Serie	Motor	A. Fab	Est. Téc	. Primar
Secun	d Ubicación						
728235 Rojo	SUZUKI AX 100 09 SUP.CONTROL	B22170	199533	C63582	1998	Malo	Rojo
	JAWA 350 13 D.EQUIPOS	B06761	63421825	T42166	1988	Regular	Rojo
	JAWA 350 23 B CARGA CAM.	B06685	M1103030RV	8351T29738	1997	Malo	Verde
Total o	de Equipos MOTOCIO	LETA			3		
CLASE Colore		A CERRADA	- PANEL				
Invent	Marca - Modelo	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
Secun	d Ubicación						
	JIN BEI HAISE 27L 15 DIR.EQUIVAR	B024647	D57K041360	G011187	2007	Malo	Blanco
Total	de Equipos CAMIONE	TA CERRAL	DA - PANEL		1		
CLASE	: PU CAMIONET.	A ABIERTA	PICK UP-			Colore	es
Invent Secun		Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar

718440	GREAT WALL CC1021LC	B212919	A096439	0809027085	2009	Malo	Blanco
Blanco	82 B.COMPL.						

CLASE: CAG CARRETA AGRICOLA

Colores

A. Fab Est. Téc Primar Invent Marca - Modelo Chapa Serie Motor Secund Ubicación 694120 PTS 16576 1988 Regular Amarillo Negro 82 B.COMPL. 703336 PTS 21322 1989 Malo Amarillo Amarillo 82 B.COMPL. 703352 PTS 1989 Regular Gris 20030 Gris 82 B.COMPL. 708593 PTS 1990 Regular Amarillo 59

82 B.COMPL.

Total de Equipos CARRETA AGRICOLA 4

CLASE: CK CAMION AUXILIO

Colores

Amarillo

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar Secund Ubicación

825213 HOWO QDZ5251TQZCZ B172159 089748 702777 2015 Regular Blanco Blanco 79 B.MTTO.REP.OMN

1

Total de Equipos CAMION AUXILIO

CAMION PLATAFORMA-PLANCHA

CLASE : Colores

CP

A. Fab Est. Téc Primar Invent Marca - Modelo Chapa Serie Motor Secund Ubicación 541100 KAMAZ 5320/YAMZ 236 B168369 1991 Regular Naranja 17226055 603393 27 BRIG.CARGA 686830 KAMAZ 5320/YAMZ 236 1980 Regular Rojo B173196 0306869 202978 Gris 27 BRIG.CARGA 541094 KAMAZ 5320/YAMZ 238 1986 Regular Azul B173135 RVM0009514 2028908879 Gris 27 BRIG.CARGA 539883 KAMAZ 53212 B195614 1782142 6004647 1988 Regular Naranja 27 BRIG.CARGA Gris

547860 Gris	KAMAZ 53212 27 BRIG.CARGA	B173364	RVM0003696	0974810	1985	Malo	Azul
547861 Gris	KAMAZ 53212 27 BRIG.CARGA	MTA641	RVM0011535	001727	1985	Regular	Azul
686871 Azul	KAMAZ 53212 27 BRIG.CARGA	B125179	47688	2495291	1988	Regular	Azul
703038 Gris	KAMAZ 53212 27 BRIG.CARGA	B025474	059551	765868	1989	Regular	Azul
703080 Gris	KAMAZ 53212 27 BRIG.CARGA	B173363	60242	305923	1988	Regular	Azul
703082 Gris	KAMAZ 53212 27 BRIG.CARGA	B172171	RVM0008544	100816	1989	Regular	Azul
727456 Gris	KAMAZ 53212 27 BRIG.CARGA	B016648	RVM0008542	2321492	1989	Regular	Azul
633552 Azul	KAMAZ 53212/PEGASO 27 BRIG.CARGA	B173543	1996241	XH00734	1988	Regular	Azul
	KAMAZ 53212/YAMZ 238 27 BRIG.CARGA	B016835	48277	60291633	1988	Regular	Azul
539139 Gris	ZIL 130/HYUNDAI D4AF 27 BRIG.CARGA	B202009	RVM0011536	624502	1988	Bueno	Azul
633415 Gris	ZIL 431517/IVECO 8061 27 BRIG.CARGA	B200984	M1733643RV	268873	1984	Regular	Azul
708505 Azul	ZIL 431517/YUCHAI 27 BRIG.CARGA	B125180	3022021	380702635	1990	Bueno	Azul
709967 Azul	ZIL 431517/YUCHAI 27 BRIG.CARGA	B157768	M1528623RV	380702743	1990	Regular	Azul
708502 Azul	ZIL 431517/NISSAN FE-6 92 B.COMPRES.	B125209	M1734199RV	134290B	1990	Regular	Azul
709965 Azul	ZIL 431517/YUCHAI 84 PES.Y COMPL	B206009	M1630838RV	380702651	1990	Regular	Azul
703095 Azul	ZIL 130/YUCHAI YC6108Q 79 B.MTTO.REP.OMN	B168356	MTM13778A	380701882	1988	Regular	Azul
246917 Azul	ZIL 431517/YUCHAI 68 B.COMPRAS	B126202	M1734192RV	380702801	1971	Regular	Azul
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125165	N546718	17012837	2010	Bueno	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173499	AN546703	7013227	2010	Bueno	Verde

-	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125166	AN547512	17007337	2010	Regular	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125195	AN547506	7007817	2010	Regular	Verde

CLASE: CP CAMION PLATAFORMA-PLANCHA

Invent		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
Secund	d Ubicación						
822436 Gris	HOWO ZZ1257N5841W 23 B CARGA CAM.	B172362	AN646705	17012887	2010	Regular	Azul
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125210	AN547511	17007287	2010	Regular	Verde
822438 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173457	AN546733	17013587	2010	Bueno	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125163	AN546709	17012987	2010	Malo	Verde
-	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173454	AN546717	7013497	2010	Malo	Verde
_	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125084	AN546715	17012957	2010	Regular	Verde
-	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173372	AN646716	7013447	2010	Regular	Verde
822445 Azul	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125167	AN546713	17013217	2010	Malo	Azul
822446 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125172	AN547508	07017427	2010	Regular	Verde
822447 Azul	HOWO ZZ1257N5841W 23 B CARGA CAM.	B206121	N547515	7837917	2010	Regular	Azul
822448 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173459	AN546730	17013107	2010	Regular	Verde
822450 Azul	HOWO ZZ1257N5841W 23 B CARGA CAM.	B024674	AN546714	17013257	2010	Bueno	Azul
822451 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125197	AN547505	7007407	2010	Regular	Verde
822452 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125193	AN546700	1011170127	2010	Bueno	Verde

	HOWO ZZ1257N5841W 23 B CARGA CAM.	B172103	AN646729	7013627	2010	Regular	Verde
-	HOWO ZZ1257N5841W 23 B CARGA CAM.	B173458	AN546728	7012797	2010	Regular	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125177	AN546727	701357	2010	Regular	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B025315	AN546735	17013327	2010	Bueno	Verde
822457 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125164	AN546723	7013537	2010	Regular	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125162	AN54672	7013617	2010	Malo	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B137282	N546708	17012867	2010	Regular	Verde
822461 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125161	N546704	7013487	2010	Regular	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B200959	AN547518	07045407	2010	Malo	Verde
	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125212	N547516	7007057	2010	Regular	Verde
822467 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B172102	AN646701	17008877	2010	Bueno	Verde
822468 Azul	HOWO ZZ1257N5841W 23 B CARGA CAM.	B125168	AN547510	7017337	2010	Malo	Azul
822469 Verde	HOWO ZZ1257N5841W 23 B CARGA CAM.	B224940	N546731	17011527	2010	Regular	Verde
694027 Gris	ZIL 130/YUCHAI YC6108Q 20 REP. MTTO. CARG	B125170	2613134	380701864	1987	Regular	Azul

Total de Equipos CAMION PLATAFORMA-PLANCHA 53

CLASE: CPA TANQUE DE AGUA S/CAMION

Invent Secund	Marca - Modelo Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
696869 FIA Gris 27	NT 682-N3 BRIG.CARGA	B173440	RVM0002334	128347	1987	Malo	Azul
	WO QDZ5323GSS BRIG.CARGA	B200922	139056	1007030007	2016	Bueno	Verde

	HOWO QDZ5323GSS 27 BRIG.CARGA	B200923	139059	1007030087	2016	Bueno	Verde
540716 Gris	ZIL 130/YUCHAI YC6108Q 27 BRIG.CARGA	B016822	MTF 4388	380702933	1980	Regular	Azul
	ZIL 130/YUCHAI YC6108Q 27 BRIG.CARGA	B224485	M1528432RV	380100355	1987	Regular	Azul
539811 Azul	ZIL 130/YUCHAI YC6108Q 62 B.MTTO.	B157903	M1528433RV	380703143	1987	Regular	Azul

Total de Equipos TANQUE DE AGUA S/CAMION 6

CLASE: CPC TANQUE DE COMBUSTIBLE S/CAMION

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
539745 Gris	MAZ 500 27 BRIG.CARGA	B125202	91413	05470 J	1988	Malo	Azul
208754 Gris	MAZ AC-8-500 27 BRIG.CARGA	B233824	MTF3377A	90368922	1988	Regular	Azul
	ZIL 130/YUCHAI YC6108Q 27 BRIG.CARGA	B125171	2081667	380702890	1984	Regular	Azul
703005 Gris	ZIL 130/YUCHAI YC6108Q 27 BRIG.CARGA	B125169	2722663	380702738	1989	Regular	Azul

Total de Equipos TANQUE DE COMBUSTIBLE 4

CLASE: CPG CAMION PLATAFORMA-AUTOCARGABLE

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
727497 Azul	MAN 18-264/WD615 89 B.DE IZAJE	B016821	751Y043137	5519211	1999	Regular	Azul
718948 Azul	RENAULT CLR 230 89 B.DE IZAJE	B016700	001137	6130441	1999	Regular	Azul

Total de Equipos CAMION PLATAFORMA- 2

CLASE: CS CAMION DE CAJA DESMOTABLE-SLUG

Invent Secund	Marca - Modelo Ubicación	Chapa	Serie	Motor	A. Fab	Est. Téc	: Primar
825198 HC Amarillo	DWO QDZ5253ZXXZH	B202092 80 BTS Al	FN085915 _MEST	1007025587	2015	Regular	Amarillo
	ERCEDES BENZ BTS ALMEST	B016723	LHZ26051	206059	2001	Regular	Blanco

Total de Equipos CAMION DE CAJA DESMOTABLE- 2

CLASE: CU CUÑA TRACTORA

Invent	Marca - Modelo	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
Secund	d Ubicación						
	MERCEDES B. 1735L a21 B CARGA VOLT.	B081699	726133	RVM0012700	1991	Malo	Azul
718963 Rojo	RENAULT P 340 21 B CARGA VOLT.	B172117	009293	RVM0010672	1997	Malo	Rojo
718961 Negro	RENAULT P 340/WD615 21 B CARGA VOLT.	B016551	C0009876	6096347	2002	Bueno	Azul
733133 Azul	RENAULT P 420 21 B CARGA VOLT.	B025257	A000126557	83M0546125	2002	Regular	Azul
733112 Azul	RENAULT R-340-TI 21 B CARGA VOLT.	B172367	7601	165577	1992	Malo	Azul
	FIAT 619-TI 22 CARGA PLATAF	B200957	009005	RVB0012804	1974	Malo	Azul
	FOTON TX 2538 22 CARGA PLATAF	B209302	L018166	L004415	2015	Bueno	Blanco
	FOTON TX 2538 22 CARGA PLATAF	B172148	L018178	L004390	2015	Bueno	Blanco
	FOTON TX 2538 22 CARGA PLATAF	B224675	L018173	L003488	2015	Bueno	Blanco
-	HOWO SINOTRUK 22 CARGA PLATAF	B025326	N546712	17013007	2010	Bueno	Verde
749077 Azul	INTERNAT. 9670 22 CARGA PLATAF	B172189	18251	7000004	1986	Regular	Blanco
	INTERNAT. 9700 (6X4) a22 CARGA PLATAF	B224435	R95671	43119289	1989	Malo	Naranja
732205	INTERNAT. 9700 (6X4)	B206096	R87935	27181712	1989	Regular	Naranja

Naranja	a22 CARGA PLATAF						
633563 Azul	MAZ 504-BT 22 CARGA PLATAF	B213054	42739	044835	1985	Malo	Azul
633565 Azul	MAZ 504-BT 22 CARGA PLATAF	B172364	RVM0003401	99064945	1985	Malo	Azul
283740 Azul	MERCEDES B. ACTROS 22 CARGA PLATAF	B225096	283740	025568	1997	Regular	Azul
718962 Azul	RENAULT P 340/WD615 22 CARGA PLATAF	B016808	C0008761	7000010	2002	Regular	Azul
728234 Azul	RENAULT R-340-TI 22 CARGA PLATAF	B081035	7862	RVM0012092	1993	Malo	Azul
733115 Azul	RENAULT R-340-TI 22 CARGA PLATAF	B172116	6596	197249	1993	Malo	Azul
733118 Gris	RENAULT R-340-TI 22 CARGA PLATAF	B016602	11489	M0201070	1995	Bueno	Azul
733116 Azul	RENAULT R-340-TI/FIAT 22 CARGA PLATAF	B172521	7863	179933	1993	Regular	Azul
733120 Azul	RENAULT R-340-TI/WD615 22 CARGA PLATAF	B172177	11267	37000005	1996	Malo	Azul
676401 Rojo	RENAULT TBH-280 22 CARGA PLATAF	B016472	P102312	B 486	1984	P Baja	Rojo
728216 Azul	RENAULT TLM-280 22 CARGA PLATAF	B025918	M101114	12497	1984	P Baja	Azul
	RENAULT TLM- 22 CARGA PLATAF	B025253	101162	M201	1984	Regular	Azul
547681 Azul	ROMAN 19256/YAMZ 238 22 CARGA PLATAF	B206014	49183	99072208	1984	Malo	Azul
Total d	de Equipos CUÑA TRA	CTORA		2	26		
CLASE Colore		LTEO					
Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
822421	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125185	A542635	045587	2010	Malo	Verde
822422	HOWO ZZ3257N3241	B125184	AA542607	7007576	2010	Regular	Verde

Verde 21 B CARGA VOLT.

	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125182	AA543131	7007837	2010	Regular	Verde
822424 Azul	HOWO ZZ3257N3241 21 B CARGA VOLT.	B025475	AA544204	7045547	2010	P Baja	Azul
	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125176	AA544239	7012927	2010	Malo	Verde
	HOWO ZZ3257N3241 21 B CARGA VOLT.	B173456	AA542609	907035627	2010	Regular	Verde

CLASE: CV CAMION VOLTEO

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125174	AA542638	7045467	2010	Bueno	Verde
	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125181	AA542622	7046067	2010	Regular	Verde
-	HOWO ZZ3257N3241 21 B CARGA VOLT.	B206012	AA542597	007777	2010	Malo	Verde
822430 Verde	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125198	AA543120	7045667	2010	Malo	Verde
	HOWO ZZ3257N3241 21 B CARGA VOLT.	B125173	A542634	7045507	2010	Malo	Verde
825190 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173508	N085526	1007023657	2015	Bueno	Rojo
825191 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173522	D1116469	1007025717	2015	Bueno	Rojo
825192 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173523	FD116478	1007024497	2015	Bueno	Rojo
825193 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173517	D116470	1007024417	2015	Bueno	Rojo
825194 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173515	D116474	1007025577	2015	Bueno	Rojo
825195 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B173516	N085527	1007023907	2015	Bueno	Rojo
825196 Rojo	HOWO ZZ3257N3241(4X4) 21 B CARGA VOLT.	B206125	D116476	1007025597	2015	Malo	Rojo
825197	HOWO ZZ3257N3241(4X4)	B173521	FD116471	1007026227	2015	Regular	Rojo

Rojo 21 B CARGA VOLT.

541225 MAZ 5549 B016266 RVM0009552 01576 1982 Malo Azul

Gris 21 B CARGA VOLT.

Total de Equipos CAMION VOLTEO 20

CLASE: OM OMNIBUS CATORCE O MAS PLAZAS

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	INTERNAT. 3800/D260.5C- ALMEST	B172094	489791	1041301	1997	Regular	<u>Amarillo</u>
	INTERNATIONAL 3800 ALMEST	MSP461	H455162	1011216	1997	Malo	Amarillo
	INTERNATIONAL 3800 ALMEST	B125345	489350	1039298	1997	Malo	Amarillo
	INTERNATIONAL 3800 ALMEST	B125346	489785	1041214	1997	Regular	Amarillo
	INTERNATIONAL 3800 ALMEST	B197088	489788	1041250	1997	Malo	<u>Amarillo</u>
	GIRON VI/HYUNDAI D4 AL 78 B.OMNIBUS	B224426	RVM0003934	731599	1987	Malo	Azul
544144 Azul	GIRON VI/HYUNDAI D4AF 78 B.OMNIBUS	B025887	8301044	015733	1983	Regular	Blanco
633843 Azul	GIRON VI/HYUNDAI D4AF 78 B.OMNIBUS	B172098	8401436	173626	1985	Regular	Blanco
539816 Azul	GIRON VI/PAZ-672 78 B.OMNIBUS	B172096	RVM0002500	M158030M	1987	Malo	Blanco
547418 Rojo	GIRON VI/PAZ-672 78 B.OMNIBUS	B172681	8301664	15036087	1983	Р Ваја	Beige
693033 Azul	GIRON VI/PAZ-672 78 B.OMNIBUS	B125194	8600985	MT1359	1986	Р Ваја	Blanco
	INTERNAT. 3800/D260.5C-78 B.OMNIBUS	B201856	7YH264649	119281	2000	Regular	Amarillo
	INTERNAT. 3800/D260.5C-78 B.OMNIBUS	B201858	YH264653	1493148	2000	Regular	Amarillo
-	INTERNAT. 3800/D260.5C-78 B.OMNIBUS	B172549	H346184	120661263	2001	Regular	Amarillo

822406 Amarill	INTERNATIONAL /NISSAN o	B172684 78 B.OMNI	6YH225887 BUS	89804M	2000	Malo	Amarillo
822404 Amarill	INTERNATIONAL 3800	B172677 78 B.OMNI	1H406831 BUS	1290971	2000	Malo	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B125205	YH276368	1212097	2000	Malo	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B172683	YH264669	1198768	2000	Malo	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B125204	H406832	1206970	2001	Malo	Amarillo
-	INTERNATIONAL 3800 78 B.OMNIBUS	B172661	7382	1143092	2001	Regular	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B199813	H392395	12789650	2000	P Baja	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B125200	H276395	1224236	2000	Regular	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B195627	H276393	1204432	2001	Regular	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B125208	1H395842	1201742A	2000	Malo	Amarillo
	INTERNATIONAL 3800 78 B.OMNIBUS	B172662	1H367383	12593924	2000	Regular	Amarillo
825175 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B137278	8680W726	50884960	2008	Regular	Blanco
825176 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B168401	8680W730	50884972	2008	Regular	Blanco
825177 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B137281	8680W725	50884948	2008	P Baja	Blanco
825178 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B166619	8680W747	50881576	2008	Malo	Blanco
825179 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B168402	868W717	50884967	2008	Regular	Blanco
825180 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B137280	868W753	50884953	2008	Regular	Blanco

CLASE: OM OMNIBUS CATORCE O MAS PLAZAS

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar

Secund Ubicación

825181 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B168355	868W745	F50884946	2008	Regular	Blanco
825182 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B173117	8680W720	5088U965	2008	Malo	Blanco
825183 Azul	KING LONG XMQ6126Y 78 B.OMNIBUS	B137279	868W739	50884971	2008	Regular	Blanco
	RENAULT FR-1 78 B.OMNIBUS	B172680	0000000084	30218	1984	Propues	Blanco
	RENAULT FR-1 78 B.OMNIBUS	B172104	2000000121	58421	1985	Regular	Verde
	RENAULT FR-1 78 B.OMNIBUS	B172099	2000000106	8B0167	1985	Regular	Blanco
718424 Azul	RENAULT FR-1 78 B.OMNIBUS	B137251	1200010183	17984MJ	1989	Regular	Blanco
718425 RENAULT FR-1 Amarillo		B025251 78 B.OMNI	1200010406 BUS	RVM0011496	1989	Regular	Azul
718428 Azul	RENAULT FR-1 78 B.OMNIBUS	B125203	100000628	RVM0008939	1987	Regular	Blanco
718431 Azul	RENAULT FR-1 78 B.OMNIBUS	B172678	1000000595	RVM0008942	1988	Regular	Blanco
718433 Azul	RENAULT FR-1 78 B.OMNIBUS	B195628	2000000107	AB5951	1985	Regular	Blanco
718435 Gris	RENAULT FR-1 78 B.OMNIBUS	B172097	2000000131	RVM0011783	1985	P Baja	Verde
	RENAULT FR-1/WD615-69 78 B.OMNIBUS	B206065	2000000208	RVM0008953	1985	Regular	Blanco
	RENAULT S 53-R 78 B.OMNIBUS	B206010	0001012	18697196B	1984	Р Ваја	Blanco
825214 Azul	YUTONG ZK6107HA 78 B.OMNIBUS	B172151	F1053567	DF58586468	2015	Bueno	Azul
825215 Azul	YUTONG ZK6107HA 78 B.OMNIBUS	B172150	F053553	DF58586575	2015	Bueno	Azul
825174 Azul	YUTONG ZK6129H 78 B.OMNIBUS	B137274	6971011242	50165621	2007	Regular	Blanco

Total de Equipos OMNIBUS CATORCE O MAS PLAZAS 48

CLASE: PE PLANTAS DE ENGRASE S/CAMION

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar Secund Ubicación

544734 ZIL 130/YUCHAI YC6108Q B080934 RVM0003709 380701764 1988 Regular Azul Azul 62 B.MTTO.

Total de Equipos PLANTAS DE ENGRASE S/CAMION 1

CLASE: RP S/REMOLQUE PLATAFORMA

Colores

Invent Secun		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
749099 Azul	ODAZ 9370 22 CARGA PLATAF	B010457	MTH36152A		1990	Malo	Azul
825216 Amarill	QINGDAO QDZ9340TJZ o	B051821 22 CARGA	F0007542 PLATAF		2015	Malo	Amarillo
	TAINO RP-12 22 CARGA PLATAF	B010462	9		2001	Malo	Verde
287741 Azul	TAINO RP-12 22 CARGA PLATAF	B051272	280366		1972	Р Ваја	Azul
348342 Amarill	TAINO RP-12 o	B051273 22 CARGA	MTF-4174-A PLATAF		1988	Malo	Amarillo
364767 Amarill	TAINO RP-12 o	B051264 22 CARGA	RVM0003684 PLATAF		1986	Malo	Amarillo
539719 Azul	TAINO RP-12 22 CARGA PLATAF	B051271	71107		1971	Malo	Azul
732239 Amarill	TAINO RP-12 o	B010473 22 CARGA	03 PLATAF		1999	Malo	Amarillo
732240 Azul	TAINO RP-12 22 CARGA PLATAF	B051245	45		1999	Regular	Azul
732241 Azul	TAINO RP-12 22 CARGA PLATAF	B051247	071		1999	Malo	Azul
728229 Azul	TRAILOR SPP-35-26 22 CARGA PLATAF	B051820	890803		1988	Malo	Azul
733122 Azul	TRAILOR SPP-35-26 22 CARGA PLATAF	B010454	12598		1988	Regular	Azul

Total de Equipos S/REMOLQUE PLATAFORMA

12

CLASE: RPB REMOLQUE PLATAFORMA POR BARRA

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
708516 Gris	GKB 832801 82 B.COMPL.		14656		1990	Malo	Gris
708529 Gris	GKB 832801 82 B.COMPL.		9151		1990	Malo	Gris
691813 Amarille	SARD BECK 2N-TC-4-493T		808589 82 B.COMPL.		1989	Regular	Amarillo
	SINOTRUK QDZ9362YHF 82 B.COMPL.		3294		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 82 B.COMPL.		3289		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 82 B.COMPL.		3292		2015	Regular	Blanco

CLASE: RPB REMOLQUE PLATAFORMA POR BARRA

Invent	Marca - Modelo	Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
Secund	Ubicación						
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3286		2015	Malo	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3290		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3288		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3291		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3285		2015	Malo	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3287		2015	Regular	Blanco
	SINOTRUK QDZ9362YHF 32 B.COMPL.		3293		2015	Regular	Blanco
696965 Z Amarillo	ZORZI 22-RB-65		0101 82 B.COMPL.		1979	Malo	Amarillo

Total de Equipos	REMOLQUE PLATAFORMA POR	14
------------------	-------------------------	----

CLASE: RPP S/REMOLQUE PORTA PANEL

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar

Secund Ubicación

339498 TAINO SP-13 B051854 015 1982 Malo Amarillo

Amarillo 22 CARGA PLATAF

Total de Equipos S/REMOLQUE PORTA PANEL 1

CLASE: RV S/REMOLQUE VOLTEO

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar

Secund Ubicación

719845 FRUEHAUF YCHFA2 73/20 B051248 003605 1997 Malo Rojo

Rojo 21 B CARGA VOLT.

733136 MONTENEGRO SVF-2G- B051263 767M004427 2002 Malo Rojo

Rojo 21 B CARGA VOLT.

733137 MONTENEGRO SVF-2G- B010493 67M0004431 2002 Bueno Rojo

Rojo 21 B CARGA VOLT.

733138 MONTENEGRO SVF-2G- B010461 767M004434 2002 Bueno Azul

Azul 21 B CARGA VOLT.

733139 MONTENEGRO SVF-2G- B010471 767M004426 2008 Regular Azul

Azul 21 B CARGA VOLT.

703026 TAINO SR-1 B051762 RVM0006459 1988 Malo Azul

Azul 21 B CARGA VOLT.

826160 TIANMA QDT9RZ B051841 C0XHC003 2016 Bueno Blanco

Blanco 21 B CARGA VOLT.

Total de Equipos S/REMOLQUE VOLTEO 7

CLASE: SCR S/REMOLQUE SILO CEMEMTO QTA RU

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar

Secund Ubicación

822111 FORD 22-P B051765 01030 1988 Bueno Azul

Blanco 22 CARGA PLATAF

221116 Rojo	TAINO SS-22 22 CARGA PLATAF	B051270	17	1989	Malo	Verde
516944 Gris	TAINO SS-22 22 CARGA PLATAF	B010483	036	1985	Regular	Azul
631055 Rojo	TAINO SS-22 22 CARGA PLATAF	B051855	MTH18026A	1978	Regular	Gris
631068 Rojo	TAINO SS-22 22 CARGA PLATAF	B010475	018	1985	Malo	Gris
720302 Azul	TAINO SS-22 22 CARGA PLATAF	B010452	11092	1987	Regular	Gris
	TRAILOR PTC-29-31.5T 22 CARGA PLATAF	B010453	RVM0012091	2000	Bueno	Azul
Total	do Equipos S/PEN/OLI	ENAENATO	7			

Total de Equipos S/REMOLQUE SILO CEMEMTO 7

CLASE: SOM SEMIÓMNIBUS TRAN-PER S/CAMION

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	ZIL 131R 78 B.OMNIBUS	B233683	630759	380700829	1985	Regular	Azul
	ZIL 131R 78 B.OMNIBUS	B225073	847396	380A02190	1984	Regular	Azul

Total de Equipos SEMIÓMNIBUS TRAN-PER S/CAMION 2

CLASE: TM TALLER DE MECANICA S/CAMION

Colores

Invent Secund		Chapa	Serie	Motor	A. Fab	Est. Téc	Primar
	HOWO QDZ5191YX 28 ASIST.TECNICA	B200921	051007	1017019877	2016	Bueno	Verde
	HOWO QDZ5191YX 28 ASIST.TECNICA	B200920	051008	1017019857	2016	Bueno	Verde

CLASE: TM TALLER DE MECANICA S/CAMION

Colores

Invent Marca - Modelo Chapa Serie Motor A. Fab Est. Téc Primar Secund Ubicación

	150 HOWO QDZ5193YX rde 28 ASIST.TECNICA	B172557	119685	107017287	2015	Bueno	Verde
	059 IFA W50 nco 28 ASIST.TECNICA	B016601	8306237	729668	1984	Malo	Azul
7099 Gri	959 ZIL 431517 s 28 ASIST.TECNICA	B172128	3000799	D16985	1990	Regular	Azul
To	t al de Eauipos TALLER D	DE MECANIO	CA S/CAMION	1	5		

Total General de Equipos 367

Anexo 4: Procedimiento para la evaluación y control a la gestión del Mantenimiento arreglar

1. INFORMACIÓN Y LOGÍSTICA.

Este aspecto principal tiene como objetivo evaluar la gestión y disponibilidad, en la entidad, de la información necesaria para la toma de decisiones relativas al mantenimiento.

De esta	forma, se persigue verificar el control de los siguientes subaspectos:
1.	Control del universo de áreas y equipos, responsabilidad de los SSTT que gestiona e mantenimiento. Óptimo BuenoX Deficiente
2.	Control de las áreas y equipos, su ubicación geográfica y jerarquía en la instalación Óptimo BuenoX Deficiente
3.	Control de las características adquisitivas, técnicas y de funcionamiento, planos componentes y repuestos, así como cualquier nota o aclaración relevante del equipo Óptimo Bueno DeficienteX
4.	El control del valor de compra de cada equipo. ÓptimoX Bueno Deficiente
5.	Control de la información sobre el proveedor del equipo. Óptimo Bueno DeficienteX
6.	Control de Terceros. ÓptimoX Bueno Deficiente
7.	Control por parte del personal de SSTT del Presupuesto de Mantenimiento. Óptimo BuenoX Deficiente
8.	Control de los recursos humanos con que se cuenta. Óptimo BuenoX Deficiente
9.	Control de los recursos materiales. Logística de Almacén, que incluye stock mínimos de recursos. Óptimo BuenoX Deficiente

CLAVE DE EVALUACIÓN:

• OPTIMO: 9 - 10

• BUENO: 7 - 8

• DEFICIENTE: 6

2. SISTEMAS DE MANTENIMIENTOS, PLANIFICACION Y PROGRAMACION

En este aspecto principal tiene como objetivo controlar la existencia de una forma de planificación del mantenimiento con sus tipos de planes. Como se aplicarán a las áreas y equipos, responsabilidad de los SSTT que gestiona el mantenimiento.

1. Control del tipo de organización del mantenimiento que se aplica en la entidad al universo de equipos y áreas.
a. Productivo Total
b. Centrado en la Fiabilidad.
c. Centrado en los Costos.
d. Alterno
Óptimo BuenoX Deficiente
2. Control de áreas o equipos con los tipos de mantenimiento.
• Correctivos.
Preventivos Planificados.
• Predictivos
ÓptimoX Bueno Deficiente
3. Control del estado de los planes de mantenimiento. ÓptimoX Bueno Deficient
·
4. Control de las órdenes de trabajos ejecutados y por ejecutar. ÓptimoX Bueno Deficiente
5. Control del personal que ha intervenido el equipo. Óptimo BuenoX Deficient
·
6. Control de los tiempos de paro. Óptimo BuenoX Deficiente
7. Control de los modos de fallo y sus causas. Óptimo BuenoX Deficiente
8. Control de los tiempos de funcionamiento. ÓptimoX Bueno Deficiente
9. Diseño y control de las señales de alarma. Óptimo BuenoX Deficiente
CLAVE DE EVALUACIÓN:
 OPTIMO: 9 - 10 BUENO: 7 - 8 DEFICIENTE: 6

3. EFICACIA Y EFECTIVIDAD DE LA PLANIFICACION DE LOS MANTENIMIENTOS.

Este aspecto principal tiene como objetivo definir la efectividad de la aplicación de las medidas de mantenimiento implementadas en los planes.
1. Disponibilidad total de los Equipos (DTE) Óptimo Bueno DeficienteX
2. Disponibilidad total de Áreas (DTA) Óptimo BuenoX Deficiente
3. Aprovechamiento de los equipos (AE) Óptimo Bueno DeficienteX
CLAVE DE EVALUACIÓN:
 ÓPTIMO (más del 90%): 9 - 10 BUENO (85% - 90%): 7 - 8 DEFICIENTE (menos del 85%): 6
DEFICIENTE (menos del 65%).
4. COSTOS.
En el área de mantenimiento es recomendable controlar una serie de índices relativos a los costos asociados a la misma; dentro de ellos se deben considerar los que se detallan a continuación:
1. Costo relativo con personal propio/ Costo de SSTT Óptimo BuenoX Deficiente
2. Costo relativo con material / Costo de SSTT Óptimo Bueno DeficienteX
3. Costo de mano de obra externa / Costo de SSTT Óptimo BuenoX Deficiente
4. Inmovilizado en repuestos / Costo de SSTT Óptimo Bueno DeficienteX
5. Costo de SSTT / Valor de venta Óptimo BuenoX Deficiente
6. Costo de SSTT / Entidad. Óptimo BuenoX Deficiente
CLAVE DE EVALUACIÓN:
• OPTIMO (más del 90%): 9 - 10
• BUENO (85% - 90%): 7 - 8
• DEFICIENTE (menos del 85%): 6

5. SOBRE EL CAPITAL HUMANO EN EL AREA DE SSTT Y LA PROTECCION DE ESTOS.

Todos los mecanismos de control de mano de obra, deben ser orientados en el sentido de obtener mayor aprovechamiento de los recursos humanos disponibles como un todo, como también propiciar, al personal, mayor seguridad y satisfacción en el desempeño de sus atribuciones.

En	este aspecto principal se propone considerar los subaspectos o indicadores siguientes:
1.	Capacitación y recalificación del personal de mantenimiento. ÓptimoX Bueno Deficiente
2.	Nivel de fluctuación de la mano de obra de mantenimiento. Óptimo BuenoX Deficiente
3.	Índice de Frecuencia (IF) de Accidentes en el área de SSTT y gravedad de Accidentes ÓptimoX Bueno Deficiente
4.	Tener definido los riesgos. Óptimo BuenoX Deficiente
5.	Tener definidas las medidas de protección en función de los riesgos. Óptimo BuenoX Deficiente
6.	Aplica los Procesos de Gestión de la Seguridad Basado en el Comportamiento (PGSBC) y determina el Índice de Seguridad Basado en el Comportamiento (IS) Óptimo BuenoX Deficiente
CL	AVE DE EVALUACIÓN:
	 OPTIMO: 9 - 10 BUENO: 7 - 8 DEFICIENTE: 6
6. 1	INFORMATIZACION.
	informatización de un Sistema Integral de Gestión de Mantenimiento, cada día se hace más cesaria, por lo que la evaluación de este aspecto principal deberá contemplar:
1.	Informatización de la información técnica de Mantenimiento. ÓptimoX Bueno Deficiente
2.	Informatización del Sistema de Mantenimiento Correctivo. ÓptimoX Bueno Deficiente
3.	Informatización del Sistema de Mantenimiento Preventivo/Predictivo. ÓptimoX Bueno Deficiente
4.	Informatización del Sistema de Paradas programadas. ÓptimoX Bueno Deficiente
5.	Informatización del Sistema de Seguimiento y Control de la Gestión del Mantenimiento. ÓptimoX Bueno Deficiente
	Seguimiento y control sistemático (Mensual)
	Seguimiento y controles a petición

	6.	Interfaz con otras aplicaciones informáticas. ÓptimoX Bueno Deficiente
7.		ministrador y cumplimiento de las normas de seguridad informática. ÓptimoX Bueno Deficiente
CL	.AVE	DE EVALUACIÓN:
		 OPTIMO: 9 - 10 BUENO: 7 - 8 DEFICIENTE: 6
	7. 1	MEDIO AMBIENTE.
	de	adecuado sistema de control medio ambiental es determinante en la Gestión de la actividad mantenimiento y es además el área de SSTT la encargada de los procesos de saneamiento de nstalación.
	1.	Reciclaje de residuales líquidos. ÓptimoX Bueno Deficiente
	2.	Reciclaje de residuales sólidos. ÓptimoX Bueno Deficiente
	3.	Utilización de recursos biológicos de control. ÓptimoX Bueno Deficiente
	4.	Utilización de recursos químicos de control. ÓptimoX Bueno Deficiente
	5.	Entidad que cuida el Medio Ambiente. ÓptimoX Bueno Deficiente
	CL	AVE DE EVALUACIÓN:
		 OPTIMO: 9 - 10 BUENO: 7 - 8 DEFICIENTE: 6
	8. (OPINION DEL CLIENTE FINAL.
		ra apreciar una adecuada gestión de la calidad de los servicios, es indispensable conocer el terio del cliente final.
		r regla las encuestas, que no son realizadas por el área de SSTT y no reflejan intencionalmente evaluación de la gestión de los SSTT, por lo que este aspecto deberá ser controlado siempre.
	1.	Control del número de quejas relacionadas por la gestión de SSTT. Óptimo BuenoX Deficiente
	2.	Índice de satisfacción del cliente donde incide la gestión de SSTT (ISST) Óptimo Bueno X Deficiente
		ISST = # de quejas correspondientes a la actividad de SSTT / # total de quejas

CLAVE DE EVALUACIÓN PARA EL ITEMS 1:

• Óptimo: 9 - 10 • BUENO: 7 - 8 • DEFICIENTE: 6

CLAVE DE EVALUACIÓN PARA EL ITEMS 2:

• OPTIMO (menos del 5%): 9 - 10 • BUENO (DEL 6% al 10%): 7 - 8

• DEFICIENTE (más del 10%): 6

Anexo 5: Cuestionario del Método de Expertos

ENCUESTA DE EXPERTOS.

Estimado experto, usted ha sido seleccionado por sus conocimientos o experiencia en el tema de Servicios Técnicos de Mantenimiento.

Es necesario que los criterios que le presentamos a continuación, ud los ordene de mas importante a menos importante, utilizando el numero 1 para el que a su juicio sea el de más importancia y así sucesivamente.

Los criterios que usted verá se corresponden con deficiencias y-o dificultades que limitan la gestión del mantenimiento y que ha sido enunciadas a partir del resultado de: encuestas, entrevistas y tormentas de ideas.

- 1. Falta de indicadores asociados a la gestión del mantenimiento
- 2. Malas condiciones laborales
- 3. Falta de recursos para desarrollar el trabajo.
- 4. Deterioro del inmueble y sus redes
- 5. Falta de calificación en el personal de mtto.
- 6. Enfoque reactivo en la gestión
- 7. Insuficiente financiamiento para la gestión.
- 8. Falta del enfoque de proceso a nivel organizacional.
- 9. Extrema insatisfacción con el salario.
- 10. Insuficiente aplicación del mantenimiento preventivo
- 11. Malas condiciones de almacenamiento y logística en general.
- 12. Incompletamiento de la plantilla necesaria
- 13. Desconocimiento parcial o total en la dirección a todos los niveles del papel del mantenimiento en la gestión del proceso asistencial.
- 14. En los planes de capacitación no está previstas la gestión de mantenimiento.

Anexo 5: Plan de mantenimiento

1. Revisión diaria:

- ❖ Comprobar el nivel de aceite del motor, rellenar si es necesario.
- Comprobar si hay alguna pieza con fuga o dañada en el sistema de aire. Limpieza del filtro.
- Limpiar el polvo en el depósito del radiador. Comprobar el nivel de agua.
- Comprobar estado de la palanca de mano y el cinturón de seguridad.
- ❖ Comprobar el estado de las luces para los vehículos que están en carretera
- Comprobar todos los pernos, arandelas y tuercas de la cabina.
- Aplicar grasa para la lubricación del brazo de la elevación y la clavija del eje del cilindro, para los equipos con estas características.
- Drenar agua del filtro de combustible.
- ❖ Verificar el estado del pedal de freno y la palanca de dirección.
- Comprobar que las tuercas de sujeción de los neumáticos al cubo mantengan un apriete 28-30 Kf/m.
- ❖ Aplicar grasa al eje de dirección.

2. Mantenimiento cada 50 horas:

- Se realiza todo lo referente al mantenimiento 1.
- ❖ Aplicar grasa al eje de la dirección.
- Comprobar el nivel de aceite hidráulico, comprobar si existen daños o fugas, reparar o hacer reemplazo de mangueras o tuberías dañadas.
- Chequear el nivel de aceite de la transmisión.
- Chequear el nivel de electrolito de las baterías y conexión de los cables.

3. Mantenimiento cada 100 horas:

- ❖ Se realiza todo lo referente al mantenimiento 1 y 2.
- Limpiar el interior del tubo de escape.
- ❖ Chequear el ajuste de la correa del ventilador.

4. Mantenimiento cada 250 horas:

- ❖ Se realiza todo lo referente al mantenimiento 1, 2 y 3.
- * Reemplazar el filtro y aceite del motor.
- Chequear la tensión de la correa del motor.
- Comprobar el nivel de aceite de la caja de velocidad.

5. Mantenimiento cada 500 horas:

- ❖ Se realiza todo lo referente al mantenimiento 1, 2, 3 y 4.
- * Reemplazar el filtro de combustible.
- Cambio del aceite hidráulico.
- * Reemplazo del filtro de aire

6. Mantenimiento cada 1000h:

- ❖ Se realiza todo lo referente al mantenimiento 1, 2, 3, 4 y 5.
- Cambio de aceite de la caja de velocidad.