

UNIVERSIDAD DE MATANZAS FACULTAD DE CIENCIAS TÉCNICAS DEPARTAMENTO DE QUÍMICA E INGENIERÍA QUÍMICA

EVALUACIÓN DE LA ELEVACIÓN ARTIFICIAL CON BOMBAS DE CAVIDADES PROGRESIVAS EN EL YACIMIENTO SEBORUCO

ESPECIALIDAD EN PERFORACIÓN DE POZOS DE PETRÓLEO Y PRODUCCIÓN DE PETRÓLEO.

MENCIÓN: PRODUCCIÓN DE PETRÓLEO.

Autor: Ing. Daniel Monsanto Moreno

Matanzas

2018

UNIVERSIDAD DE MATANZAS FACULTAD DE CIENCIAS TÉCNICAS DEPARTAMENTO DE QUÍMICA E INGENIERÍA QUÍMICA

PETRÓLEO SEDE: HABANA

EVALUACIÓN DE LA ELEVACIÓN ARTIFICIAL CON BOMBAS DE CAVIDADES PROGRESIVAS EN EL YACIMIENTO SEBORUCO

ESPECIALIDAD EN PERFORACIÓN DE POZOS DE PETRÓLEO Y PRODUCCIÓN DE PETRÓLEO.

MENCIÓN: PRODUCCIÓN DE PETRÓLEO.

Autor: Ing. Daniel Monsanto Moreno

Tutores: Esp. Armando Cajigal Correa

Dr. C. Yamilé Martínez Ochoa

Matanzas 2018

NOTA DE ACEPTACIÓN

		_	
	Presidente del Tribunal		
	r residente dei rribunai		
	Miembro del Tribunal		
	Miembro del Tribunal		
	Miembro del Tribunal		
	Miembro del Tribunal		
Calificación		Ciudad, fecha	

DECLARACIÓN DE AUTORIDAD

Yo, <u>DANIEL MONSANTO MORENO</u> declaro que soy el único autor del presente

trabajo y autorizo a la Universidad de Matanzas y al Centro Politécnico del Petróleo a

hacer el uso que estime pertinente con la información que aparece en el mismo

siempre y cuando se respete nuestra autoría.

Nombre y Apellidos. Firma

SÍNTESIS

En el yacimiento Seboruco perteneciente a la Empresa de Perforación y Extracción de Petróleo de Occidente (EPEPO), trabajan 27 pozos en bombeo por cavidades progresivas. En los últimos años presentan baja productividad, debido al diseño incorrecto de los parámetros de bombeo. Es por ello que el objetivo de la siguiente investigación será realizar la evaluación de la elevación artificial con bombas de cavidades progresivas (BCP) en el yacimiento Seboruco, mediante la herramienta Microsoft Office Excel donde se lleva a cabo los balances de energía mecánica y el empleo de dos herramientas computacionales: Análisis de la producción del pozo e Índice de productividad real. Con la aplicación de estas herramientas se obtienen los caudales a extraer fijando 100m de sumergencia de las bombas y con los balances de energía mecánica se determina la carga necesaria de las bombas para suministrar dichos caudales. Los resultados que se obtienen con el empleo de las herramientas computacionales permite incrementar la producción de petróleo crudo en 488,8 m³/d. Con los parámetros adecuados se eligen las nuevas bombas y se llega a la conclusión que del total de pozos que se encuentran trabajando en el yacimiento, 13 tienen las bombas incorrectamente dimensionadas. A través de la valoración económica se obtiene que la inversión se recupera en el primer año, demostrándose así la factibilidad de los cambios de bombas y las velocidades de operación propuestas.

ABSTRACT

In the oil field located in Seboruco, owned by the Western Company of Drilling and Extraction of Oil (EPEPO), there are 27 wells using progressive cavity pumps. In the last few years this oil field has shown a decrease on the production rates, due to an incorrect design of the pumping parameters. Reason why the scope of this research will be to evaluate the artificial increase of the production with the use of progressive cavity pumps (BCP) through the Microsoft Office Excel tool in Seboruco where the mechanical energy balance was carried out and two computational tools were applied: Analysis Well Production and Actual Productivity Rate. The implementation of these tools allow to obtain the flow rates to be extracted by setting to 100m the submergence of the pumps, while the mechanical energy balances determine the required loads for the pumps to supply the said flow rates. The results achieved by means of the computational tools show that the crude oil productivity rate can be increased to 488,8 m³/d. The new pumps were chosen using the appropriate parameters and it was concluded that out of all the pumping wells in Seboruco oil field 13 have their pumps improperly dimensioned. The economic appraisal of this project demonstrates that the investment is recovered within the first year, proving the feasibility of the pump change and the operational velocity proposed.

INDICE.

INI	DICE		7
INT	RODUC	CCION	1
CA	PITULO	I ANÁLISIS BIBLIOGRÁFICO.	4
1.1	Origer	ı del Petróleo.	4
1.2	Princi	pios generales de los métodos de extracción de petróleo	5
	1.2.1	Método de extracción por surgencia.	5
	1.2.2	Método de extracción por levantamiento artificial.	6
	1.2.2.1	Extracción de petróleo por gas o "Gas-Lift	6
	1.2.2.2	Bombas mecánicas o convencionales.	7
	1.2.2.3	Bombas electro-sumergibles.	9
	1.2.2.4	Bombas hidráulicas.	9
	1.2.2.5	Bombas de cavidades progresivas.	10
1.3	Princi	pio de funcionamiento de las Bombas de Cavidades Progresivas	11
1.4	Eleme	ntos de superficie del bombeo por cavidades progresivas	13
	1.4.1	Cabezal de rotación.	13
	1.4.2	Sistema de transmisión	14
	1.4.3	Sistema de Freno.	15
1.5	Equip	amiento de subsuelo del bombeo por cavidades progresivas	16
	1.5.1	Suberías de producción	16
	1.5.2	arta de varillas o cabillas.	17
	1.5.3 Es	tator	17
	1.5.4 E	lastómero	18
	1.5.5 F	Rotor	18
	1.5.6 N	ple de paro.	19

	1.5.7 Ancla de torsión.	19
	1.5.8 Ancla de gas.	20
1.6	Clasificación de las BCP	20
	1.6.1 Bombas tubulares	20
	1.6.2 Bombas Insertadas.	21
1.7	Mantenimiento de las BCP	21
1.8	Problemas operacionales de las BCP	22
	1.8.1 Problemas operacionales en superficie	22
	1.8.2 Problemas operacionales en subsuelo.	22
1.9	Medidas de seguridad para el funcionamiento y reparación de las BCP	22
1.10	Conclusiones parciales	23
CA	PÍTULO 2. MATERIALES Y MÉTODOS	25
2.1.	Empresa de Perforación y Extracción de Petróleo de Occidente (EPEPO)	25
2.2.	Caracterización de la elevación artificial del petróleo en el yacimiento de Seboruco	27
	2.2.1 Descripción del yacimiento Seboruco	27
	2.2.2 Análisis de la producción de petróleo en el yacimiento Seboruco	28
2.3	Obtención de los parámetros adecuados de las BCP.	29
	2.3.1 Cálculo de los caudales a extraer	30
	2.3.2 Cálculo de la carga de las bombas,	39
2.4	Selección de las bombas adecuadas	43
2.5	Valoración económica de las bombas propuestas.	44
CA	PITULO III RESULTADOS Y DISCUSION	47
3.1	Análisis de la producción de petróleo en el yacimiento Seboruco.	47
3.2	Resultados del cálculo de los caudales a extraer.	48
3.3	Resultados del cálculo de la carga de las bombas	54
3.4	Resultados de la selección de las bombas.	57
3.5	Valoración económica.	59
3.6	Conclusiones parciales	60

CONCLUSIONES	61
RECOMENDACIONES	62
BIBLIOGRAFÍA	63
ANEXOS	66
ANEXO 1 Foto del programa AWP,	66
ANEXO 2 Foto del programa IPR	67
ANEXO 3 Curvas de Vogel para cada pozo,	68
ANEXO 4 Catálogo de las BCP Netzsch	77
ANEXO 5 Catálogo de las BCP Kudu	79
ANEXO 6 Catálogo de las BCP PCM,	81
ANEXO 7 Determinación del valor actual neto	82

INTRODUCCION

El crudo se extrae mediante la perforación de un pozo sobre el yacimiento. Cuando el yacimiento tiene la suficiente energía, para levantar estos fluidos hasta la superficie, se dice que el pozo produce en forma natural. Cuando esto no es posible, es decir, el yacimiento solo tiene la presión necesaria para levantar los fluidos hasta cierto nivel dentro del pozo, es necesaria la instalación de un sistema de levantamiento artificial, que adicione presión para poder llevar los fluidos hasta la superficie. (Fernandez, 2013)

Existen varios métodos de levantamiento artificial entre ellos se encuentra el principio de utilización de bombas de cavidades progresivas (BCP). Este sistema de bombeo se pude aplicar en pozos de crudos medianos y pesados; de bajas a medianas tasas de producción; instalaciones relativamente profundas; en la producción de crudos arenosos, parafínicos y muy viscosos; pozos verticales, inclinados, altamente desviados y horizontales y pozos con alto contenido de agua, Las mismas constituyen una alternativa técnicamente apropiada para la evaluación del potencial de pozos y reducción de costos. (Cajigal., 2010)

Estas bombas elevan mecánicamente el líquido del pozo cuando no hay suficiente presión en el yacimiento para que el líquido fluya hasta la superficie. Cuando el rotor gira dentro del estator se crean cavidades selladas las cuales progresan desde la succión hasta la descarga, transportando de manera positiva el fluido del pozo por la columna de producción hasta la superficie sin pulsaciones (Chacin, 2003).

El yacimiento Seboruco es el máximo exponente de crudo en la zona de la costa norte entre La Habana y Matanzas. Su descubrimiento vino aparejado con la perforación del pozo Seb-1 en el año 1999. Actualmente se han perforado 38 pozos y de ellos 33 pozos producen por bombeo por cavidades progresivas. De estos 33 pozos 27 pertenecen al llamado bloque Seboruco-Petraf, en el cual se centra este estudio. Durante los últimos años ha existido un decrecimiento de los índices de producción de los pozos. Los recursos de petróleo original in situ en el yacimiento se estiman en más de 225 millones de m³ y la recuperación apenas llega al 3,78%. (Loreley, 2017).

Al descubrirse el yacimiento, la presión promedio era de 16693 kPa [164,75 atm], tomada a la profundidad de referencia de 1600 metros. A finales de Diciembre del 2017, el yacimiento ya había producido 8,512 millones de m³ de petróleo y 1696 MM m³ de gas acompañante y la presión de capa media es de 10900 kPa. La inundación media del yacimiento es aproximadamente del 20%. La RGP media del Sector Seboruco es de 459 m³/ m³. (Loreley, 2018).

Problema científico:

Baja eficiencia en la producción de petróleo crudo debido a un incorrecto dimensionamiento de las bombas de cavidades progresivas.

Hipótesis:

Si se determinan las cargas y los caudales a 100 m de sumergencia de las BCP, se elevará la producción de petróleo crudo en el yacimiento Seboruco.

.Objetivo General:

Evaluar el diseño de las bombas de cavidades progresivas en el Yacimiento Seboruco para mejorar la eficiencia desde el punto de vista tecnológico y económico.

Objetivos Específicos:

- 1. Realizar una revisión del estado de la elevación artificial del petróleo en el yacimiento Seboruco, por medio de datos estadísticos.
- 2. Obtener los parámetros adecuados de las BCP.
- 3. Seleccionar las bombas adecuadas.
- 4. Valorar las bombas propuestas desde el punto de vista técnico-económico.

Este proyecto consta de tres capítulos.

- Capítulo I: Análisis Bibliográfico.
- Capítulo II: Diseño metodológico.
- Capítulo III: Resultados y discusión.

Además de conclusiones, recomendaciones, bibliografía y anexos.

CAPITULO I ANÁLISIS BIBLIOGRÁFICO.

1.1 Origen del Petróleo.

El petróleo se forma como resultado de un complejo proceso físico-químico en el interior de la tierra que, debido a la presión y las altas temperaturas, se van descomponiendo las materias orgánicas que estaban formadas especialmente por fitoplancton y el zooplancton marinos, así como por materia vegetal y animal, que se fueron depositando en el pasado en lechos de los grandes lagos, mares y océanos. A esto se unieron rocas y mantos de sedimentos. A través del tiempo se transformó esta materia orgánica en petróleo y gas natural. (Gonzalez, 2012).

La roca donde se forma el petróleo se llama madre, la cual es generalmente de grano fino, de naturaleza arcillosa aunque también pueden ser rocas carbonatadas. Estas rocas contienen cantidades significativas de materia orgánica fósil y si la misma tiene una predominancia de restos de vegetales (húmica), los petróleos que se forman suelen ser gaseosos. (Garcia, 2003)

Las rocas madres pueden ser: inmaduras, maduras o supermaduras. Las inmaduras generaron (o siguen generando) petróleos pesados y extrapesados. Las maduras forman petróleos de densidad media y ligeros. Las supermaduras evidencian que la materia orgánica fue sometida durante un largo tiempo a altas temperaturas y hoy ya no pueden generar más hidrocarburos. (Wariquier, 2000).

En la mutación de la materia orgánica fósil para convertirse en hidrocarburos, intervienen varios factores, pero los más importantes son la temperatura, el tiempo y la presión a que llega ser sometida por efecto de la profundidad. A mayor temperatura y presión, más ligeros o livianos serán los hidrocarburos resultantes. También influyen en la calidad del petróleo el tiempo de cocción de la materia orgánica, el tipo de sedimentos (rocas) en que está contenida con la presencia o no de metales, que a modo de catalizadores favorezcan la transformación. Aunque este proceso se sigue produciendo en la actualidad, es tan lento que hacen falta millones de años para que se forme un nuevo yacimiento de petróleo.

En los yacimientos el petróleo se acumula en capas de un tipo especial de rocas porosas y permeables, las cuales son llamadas rocas almacén o reservorios, que a diferencia de la roca

madre, tienen solamente un rol pasivo: contener los hidrocarburos y entregarlo al espacio del pozo luego de la perforación.

El crudo se encuentra alojado a gran presión en una roca almacén cubierta en su parte superior por rocas impermeables o sellos (generalmente rocas muy arcillosas o capas de sal). Los sellos son aquellas rocas que impiden la fuga de los hidrocarburos durante la migración hacia la superficie procedente de las rocas madres. Este sistema conformado por rocas reservorio y rocas sellos es conocido como trampas de petróleo.

Al llegar la barrena o trépano a un reservorio saturado en una trampa, se rompe el equilibrio dinámico de presión que ha mantenido el petróleo en la capa durante millones de años. Si la presión en el caño del pozo es menor que en la formación, entonces, de todos los poros y fracturas de la roca comienzan a salir miles de pequeñas gotas de petróleo hacia el espacio del caño del pozo y de ahí a la superficie, eventualmente en forma de un gran caudal

1.2 Principios generales de los métodos de extracción de petróleo.

Para la extracción de crudo en los pozos petrolíferos se utilizan diversos métodos a nivel mundial, entre los que se encuentran por surgencia o por levantamiento artificial.

1.2.1 Método de extracción por surgencia.

Este método se utiliza principalmente en la primera etapa de explotación de los pozos, período en el cual los mismos conservan aún en gran medida su energía natural, es el más económico y menos complicado que se pueda utilizar, ya que el petróleo surge naturalmente con la energía propia de la capa la cual es capaz de levantar la columna de petróleo desde el fondo hasta la superficie y la mano del hombre interviene menos que en los otros métodos existentes.

En el cabezal del pozo se instalan dispositivos, tales como un manómetro para verificar la presión del flujo del pozo, un estrangulador o choque (fijo o graduable) para regular el flujo del pozo y las válvulas para cerrar el pozo y tener acceso al espacio anular en caso necesario.

Inicialmente al pozo se le abre todo el choque para que limpie el caño lo más posible, ya que está lleno de agua producto de la fase de terminación. Si el paso anterior no resulta, entonces

se procede a inyectar petróleo ligero que ayudará a aligerar la columna hidrostática. Este proceso ayuda a crear una depresión en el fondo del pozo y a su vez una surgencia. Después se va cerrando el choque poco a poco y midiendo la producción en cada momento hasta obtener un choque y una producción adecuada con la cual trabajará el pozo .

Este método se utiliza principalmente en la primera etapa de explotación de los pozos, período en el cual los mismos conservan aún en gran medida su energía natural. Existe otro caso en el que el pozo aunque esté surgente se le coloca una unidad de bombeo para estimularlo e incrementar la producción (Cajigal, 2010)..

1.2.2 Método de extracción por levantamiento artificial.

Cuando un pozo de petróleo no es capaz de surgir naturalmente, es decir, el yacimiento solo tiene la presión necesaria para levantar los fluidos hasta cierto nivel dentro del pozo, es necesaria la instalación de un sistema de levantamiento artificial, que adicione presión para poder llevar los fluidos hasta la superficie. (Thomas, 2001).

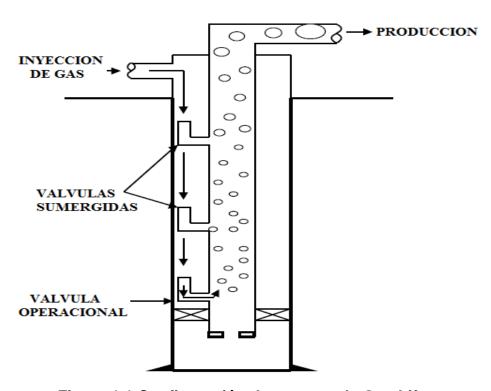
Los métodos de levantamiento artificial más comunes al comienzo de la industria petrolera eran: levantamiento por gas o "Gas-Lift" para crudos medianos y livianos y bombeo mecánico convencional (BMC) para crudos pesados. Posteriormente comienza la aplicación en campo, de métodos no convencionales, tales como el bombeo electro sumergible (BES), bombeo hidráulico y el bombeo por cavidades progresivas (BCP) según las características del yacimiento e intervalos seleccionados para producir.

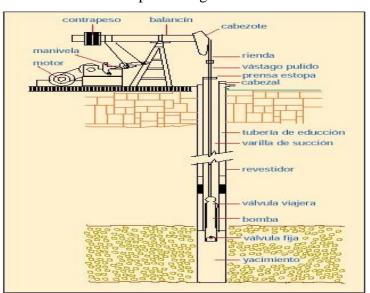
1.2.2.1 Extracción de petróleo por gas o <u>"Gas-Lift.</u>

El levantamiento artificial por gas es el método que utiliza una fuente externa de gas de alta presión, para ayudar al gas de formación a elevar los fluidos de un pozo incapaz de surgir naturalmente (Figura 1.1). El peso de la columna de fluido crea una presión igual a la presión estática del yacimiento. Al inyectar el gas, la presión ejercida por la columna se reduce y el pozo es capaz de surgir debido a la expansión del gas, reducción de la densidad del fluido y desplazamiento del líquido por el gas comprimido.

El grado de reducción de la presión de fondo de un pozo de <u>"Gas-Lift"</u> depende de la cantidad de gas inyectada y la profundidad de inyección . (Boyun, 2007) (Cajigal, 2013)

La cantidad de gas a inyectar para producir un metro cúbico de fluido depende del caudal de fluido a alcanzar, el porcentaje de agua, la relación gas-fluido del yacimiento, la profundidad del punto de inyección, el diámetro de la tubería, la presión estática del pozo y el índice de productividad.




Figura 1.1 Configuración de un pozo de Gas-Lift.

Este método tiene como ventajas la mayor flexibilidad sin cambiar elementos subterráneos, maneja entrada de arenas u otros sólidos, no se afecta por los grados de desviación del pozo, trabaja en pozos con alta relación gas petróleo (RGP), permite la bajada de instrumentos por la tubería de producción. Las desventajas que tiene es que requiere una fuente de gas a alta presión, no se recomienda en pozos alejados de la red de gas de alta presión, las camisas del pozo deben estar muy herméticas.

1.2.2.2 Bombas mecánicas o convencionales.

Estas bombas son de pistón y están constituidas por 2 válvulas de bola: una válvula inmóvil y una válvula en el pistón que viaja hacia arriba y hacia abajo junto con la bomba, conocida como válvula viajera. Cuando las varillas están viajando para arriba, la válvula viajera se

cierra y la válvula fija se abre (debido a la baja presión en el cilindro de la bomba). Por lo tanto, el cilindro de la bomba se llena de líquido mientras que el pistón que viaja levanta el contenido anterior del cilindro hacia arriba. Cuando las varillas comienzan a empujar hacia abajo, la válvula que viaja se abre y la válvula fija se cierra (debido a un aumento en la presión del cilindro de la bomba). El líquido en el cilindro fluye para arriba a través de la válvula viajera. El levantamiento del petróleo se obtiene a través del movimiento reciprocante del émbolo con la válvula viajera dentro del cilindro. El pistón se acciona desde la superficie por un gato o unidad de bombeo, conectado por cabillas enroscadas de diferentes diámetros. Un mecanismo de biela-manivela convierte el movimiento rotatorio del motor a un movimiento alternativo vertical que mueve la varilla de la bomba y produce el movimiento de cabeceo característico (Cajigal, 2013). (Jonhn, 2005).

En la Figura 1.2 se muestran los componentes generales de la bomba mecánica o convencional

Figura 1.2 Componentes generales de la bomba mecánica o convencional.

Las ventajas que presentan este tipo de bombas son: sistema de alta eficiencia, fácil instalación de los controles de optimización, serviciado y reparación económicos, existencia de talleres de ensamblaje y reparación, resistencia a la corrosión con materiales mejorados, rangos de producción variables por ajuste de la embolada y la velocidad en la superficie y alta resistencia del equipo de superficie y sumergido. Las desventajas del método son: desgaste potencial del vástago y la tubería de producción, la eficiencia de bombeo decrece con el incremento de la

proporción de gas, el sistema está limitado por la capacidad portante del vástago, los volúmenes decrecen con la profundidad y preocupaciones medio-ambientales y estéticas. (Cajigal, 2013)

1.2.2.3 Bombas electro-sumergibles.

Este tipo de bombeo es utilizado en la explotación de pozos profundos con bajo nivel dinámico y alta productividad. Su principio fundamental es levantar el fluido de producción desde el yacimiento hacia la superficie, mediante rotación centrífuga de los impulsores de la bomba, que permite que el fluido vaya ascendiendo a través de los mismos y llegue impulsado a la superficie con suficiente energía para llegar a la estación de flujo. La potencia requerida por esta bomba es suministrada por un motor eléctrico que está ubicado en el pozo y la corriente eléctrica que se necesita es suministrada a través de un cable desde la superficie hasta el motor. (Brunings, 1998).

Los equipos que componen este tipo de bombeo son: la centrífuga multietápa, dispositivo de succión separador de gas, protector, motor eléctrico de doble inducción y cable blindado de tres conductores. Las bombas se sitúan habitualmente cerca del intervalo punzado, también con esta medida se pueden alcanzar depresiones máximas en el sistema del pozo, necesarias para la optimización de la producción y así lograr que los fluidos producidos pasen alrededor del motor y tenga lugar una transferencia de calor desde el motor a los fluidos (enfriamiento del motor. (Perry's Chemical Industries, 1997).

Entre las desventajas de este método se encuentra la necesidad de electricidad disponible (440V), adaptabilidad limitada a grandes cambios en el reservorio, difícil de reparar en el campo, presencia de gas libre o abrasivos, la alta viscosidad y los altos costos de extracción de los sistemas del pozo.

1.2.2.4 Bombas hidráulicas.

En este tipo de mecanismo de extracción del petróleo se usa como medio impelente (o medio impulsor) del petróleo un fluido de cualquier naturaleza (puede ser agua, petróleo ligero, entre otros). El mismo se bombea por las tuberías del pozo y al pasar por una zona de menor diámetro en la bomba crea una depresión que ayuda a incorporar el petróleo a la bomba. El

petróleo producido y el fluido impelente suben a la superficie por el espacio anular. La mezcla pasa por un separador y luego a un tanque, de donde el petróleo producido pasa al almacenamiento y la cantidad suficiente de fluido impelente permanece en el tanque para ser succionado por la bomba y ser bombeado otra vez al pozo.

Las bombas hidráulicas son requeridas para situaciones en las cuales se necesita una fuerte succión, una doble acción con alta eficiencia volumétrica y buena capacidad. Pero presentan limitantes en pozos donde existen grandes cantidades de sólidos además requiere montajes específicos en el fondo del pozo, el potencial de volumen es medio, requiere instalaciones de servicio y líneas de alta presión en la superficie. (Schlumberger, 2009). (Autores, 2002)

1.2.2.5 Bombas de cavidades progresivas.

Las bombas de cavidades progresivas representan un método de levantamiento artificial de crudos pesados, medianos y livianos que ofrece una amplia versatilidad, alta eficiencia y bajo costo.

Los esfuerzos realizados en investigación y desarrollo de bombas de cavidades progresivas han permitido desarrollar sistemas con elevada capacidad de producción y levantamiento. Es fundamental que se realice una adecuada selección del material elastomérico para garantizar un buen desempeño de la bomba por lo que este método de levantamiento artificial depende considerablemente de la disponibilidad de materiales elastoméricos para manejar fluidos de diversa naturaleza química.

Una BCP es una bomba rotativa de desplazamiento positivo, clasificada como un tipo especial de bomba de tornillo. Estas se caracterizan por ofrecer un caudal constante (teóricamente) aunque se varíe la presión de descarga de la misma, lo que representa una de las mayores ventajas de este tipo de bombas. Adicionalmente mediante la tecnología de cavidades progresivas se pueden bombear fluidos con contenidos de agua, arena y parafinas.

Un sistema BCP consta básicamente de un cabezal de accionamiento en superficie y una bomba de fondo, la cual es engranada en forma espiral y sus componentes principales son un rotor metálico y un estator cuyo material es elastómero generalmente, aunque en la actualidad ya tenemos de metal. El crudo se desplaza en forma continua entre los filamentos de tornillo del rotor y es desplazado axialmente mientras que el tornillo rota (Autores, 2002).

El estator va en el fondo del pozo enroscado a la tubería de producción con un empaque no sellante en su parte superior. El diámetro de este empaque debe ser lo suficientemente grande como para permitir el paso de fluidos a la descarga de la bomba sin presentar restricción de ningún tipo y lo suficientemente pequeño como para no permitir el paso libre de los acoples de la extensión del rotor (Autores, 1997).

El rotor va roscado a las varillas (cabillas) por medio del niple espaciador o intermedio, las varillas son las que proporcionan el movimiento desde la superficie hasta la cabeza del rotor.

La instalación de superficie está compuesta por un cabezal de rotación, que está conformado, por el sistema de transmisión y el sistema de frenado. Estos sistemas proporcionan la potencia necesaria para poner en funcionamiento la bomba de cavidades progresivas (Ibañez, 2011).

Otro elemento importante en este tipo de instalación es el sistema de anclaje, que debe impedir el movimiento rotativo del equipo ya que, de lo contrario, no existiría acción de bombeo. En vista a esto, debe conocerse la tensión máxima que puede soportar este mecanismo a fin de evitar daños innecesarios y mala operación del sistema.

El niple de asentamiento o zapato, en el que va instalado y asegurado el sistema de anclaje, se conecta a la tubería de producción permanentemente con lo cual es posible asentar y desasentar la bomba tantas veces como sea necesario.

1.3 Principio de funcionamiento de las Bombas de Cavidades Progresivas.

La operación de una BCP se fundamenta en el principio del capsulismo, que consiste en el aislamiento de un volumen de fluido y su posterior desplazamiento desde una zona de succión a baja presión a una zona de descarga a alta presión. Durante este recorrido se presentan tres ciclos de trabajo, denominados "AS" (abierto a la succión), "CSD" (cerrado a la succión y a la descarga) y "AD" (abierto a la descarga), cada uno de los cuales se presenta dependiendo de la posición del rotor. (Gamboa, 2008).

La BCP utiliza un rotor de forma helicoidal de n lóbulos dentro de un estator en forma de helicoide de n+1 lóbulos. Las dimensiones del rotor y el estator están diseñadas de manera que producen una interferencia, la cual crea líneas de sello que definen las cavidades. Al girar el rotor, estas cavidades se desplazan (o progresan), en un movimiento combinado de traslación y rotación, que se manifiesta en un desplazamiento helicoidal de las cavidades desde la succión de la bomba, hasta su descarga, transportando de manera positiva el fluido del pozo por la columna de producción hasta la superficie sin pulsaciones como se muestra en la figura 1.3. Debido a que las cavidades están hidráulicamente selladas entre sí, el tipo de bombeo, es de desplazamiento helicoidal (desplazamiento positivo). El caudal es directamente proporcional a la velocidad de rotación. Por ello la bomba puede ajustarse al influjo del pozo para una producción óptima. (Hirschfeldt, 2008)

Figura 1.3 Desplazamiento del fluido en una bomba de cavidad progresiva.

La figura 1.4 muestra una sección transversal de una BCP convencional (1x2 lóbulos), donde observa como el diámetro del rotor es un poco mayor que el ancho de la cavidad, produciendo la interferencia (i) que crea el sello.

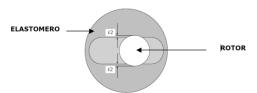


Figura 1.4 Sección transversal de una BCP

El barrido constante de la línea de sellaje entre el estator y el rotor evita la acumulación de sólidos dentro de la bomba. El gas y los sólidos que entren a la bomba pueden trasladarse en ella sin causar obstrucciones o bloqueos.

Al arrancar la bomba, sube el nivel en la tubería de producción hasta la superficie y baja el nivel en el espacio anular (principios de vasos comunicantes). Al disminuir el nivel en el

espacio anular, disminuye la presión de fondo, lo que genera una afluencia de fluido desde el yacimiento, el pozo comienza entonces a producir. Cuanto más baja el nivel de fluido en el espacio anular, más aumenta la afluencia del fluido. El nivel se estabiliza cuando la producción del yacimiento es igual al caudal de la bomba.

1.4 Elementos de superficie del bombeo por cavidades progresivas.

Los equipos de superficie de una BCP deben proveer la energía requerida por el sistema, esto significa que deben ser capaces de suspender la sarta de varillas y soportar la carga axial del equipo de fondo, entregar la torsión requerida y rotar las cabillas a la velocidad requerida y prevenir la fuga de fluidos en la superficie.

Los componentes de superficie de dividen en tres sistemas que son cabezal de rotación, sistema de transmisión y el sistema de frenado.

1.4.1 Cabezal de rotación.

El cabezal de rotación debe ser diseñado para manejar las cargas axiales de las varillas, el rango de velocidad a la cual debe funcionar, la capacidad de freno y la potencia necesaria del sistema.

Este es un equipo de accionamiento mecánico instalado en la superficie directamente sobre la cabeza de pozo. Consiste en un sistema de rodamientos o cojinetes que soportan la carga axial del sistema, un sistema de freno (mecánico o hidráulico) que puede estar integrado a la estructura del cabezal o ser un dispositivo externo y un ensamblaje de instalación que incluye el sistema de empaque para evitar la filtración de fluidos a través de las conexiones de superficie. Además, algunos cabezales incluyen un sistema de caja reductora accionado por engranajes mecánicos o poleas y correas. (Gamboa, 2000). (Oliver, 2002) .

En la Figura 1.5 se muestran dos tipos de cabezales de rotación (cabezal directo y cabezal angular).

Figura 1.5 Tipos de cabezales de rotación

1.4.2 Sistema de transmisión.

Como sistema de transmisión se conoce el dispositivo utilizado para transferir la energía desde la fuente de energía primaria (motor eléctrico o de combustión interna) hasta el cabezal de rotación.

Para la transmisión de torsión de una máquina motriz a una máquina conducida, existen al menos tres métodos muy utilizados: Transmisión con engranajes, correas flexibles de caucho reforzado y cadenas de rodillos.

Dependiendo de la potencia, posición de los ejes, relación de transmisión, sincrónica, distancia entre ejes y costo; se seleccionará el método a utilizar.

En la mayoría de las aplicaciones donde es necesario operar sistemas a velocidades menores a 150 rpm, es usual utilizar cabezales con caja reductora interna (de engranaje) con un sistema alternativo de transmisión, como correas y poleas (Figura 1.6). Esto se hace con el fin de no forzar al motor a trabajar a muy bajas rpm, lo que traería como resultado la falla del mismo a corto plazo debido a la insuficiente disipación de calor. (Oliver, 2002)

Figura 1.6 Sistema de correas y poleas

1.4.3 Sistema de Freno.

La segunda función importante del cabezal es la de frenado que requiere el sistema. Cuando un sistema BCP está en operación, una cantidad significativa de energía se acumula en forma de torsión sobre las varillas.

Si el sistema se para repentinamente, la sarta de varillas de bombeo libera esa energía girando en forma inversa para liberar torsión. Adicionalmente, a esta rotación inversa se le suma la producida debido a la igualación de niveles de fluido en la tubería de producción y el espacio anular, en el momento de la parada. Durante ese proceso de marcha inversa, se puede alcanzar velocidades de rotación muy altas.

Al perder el control de la marcha inversa, las altas velocidades pueden causar severos daños al equipo de superficie, desenrosque de la sarta de varillas y hasta la rotura violenta de la polea del cabezal, pudiendo ocasionar esta situación daños severos al operador

1.4.3.1 Características del sistema de frenado.

El sistema de frenado de las bombas de cavidades progresivas presenta las siguientes características. (Peñalosa, 1999)

- El freno tiene la capacidad requerida para manejar conjuntos de alta potencia con bombas de gran dimensión.
- El motor hidráulico que equipa el cabezal es de alta eficiencia y respuesta inmediata en ambos sentidos de giro.
- El <u>"manifould"</u> comando permite un rango de regulación según las exigencias del equipo. Ya que se puede optar por un freno progresivo, evitando así aprisionamiento de la bomba de fondo; en caso contrario se puede optar por un bloqueo del mismo según los requerimientos operativos.
- El freno de disco asegura una mejor dispersión del calor generando un frenado prolongado.
- Las pastillas del freno se pueden reemplazar fácilmente en el campo por el buen acceso al caliper de freno que se tiene.

 El freno funciona automáticamente tan pronto como hay contra rotación y la velocidad de contra rotación se puede ajustar fácilmente por el alto rango de regulación que consta el <u>"manifould"</u> comando.

De los frenos utilizados se pueden destacar los siguientes:

Freno de accionamiento por fricción: Compuesto tradicionalmente de un sistema de disco y pastillas de fricción, accionadas hidráulicamente o mecánicamente cuando se ejecuta el giro a la inversa. La mayoría de estos sistemas son instalados externamente al cuerpo del cabezal, con el disco acoplado al eje rotatorio que se ajusta al eje del cabezal. Este tipo de freno es utilizado generalmente para potencias transmitidas menores a 75 HP (Fernandez, 2005)

Freno de accionamiento hidráulico: Es muy utilizado debido a su mayor eficiencia de acción. Es un sistema integrado al cuerpo del cabezal que consiste en un plato rotatorio adaptado al eje del cabezal que gira libremente en el sentido de las agujas del reloj. Al ocurrir la marcha hacia atrás, el plato acciona un mecanismo hidráulico que genera resistencia al movimiento inverso, lo que permite que se reduzca considerablemente la velocidad inversa y se disipe la energía acumulada. Dependiendo del diseño del cabezal, este mecanismo hidráulico puede accionarse con juegos de válvula de drenaje, embragues mecánicos, etc.

1.5 Equipamiento de subsuelo del bombeo por cavidades progresivas.

Entre los componentes principales del equipamiento de subsuelo del sistema de bombeo por cavidades progresivas están las tuberías de producción, la sarta de varillas, el estator, el elastómero, el rotor, el niple de paro y las anclas de torsión y de gas.

1.5.1 Tuberías de producción.

Es una tubería de acero que comunica la bomba de subsuelo con el cabezal y la línea de flujo. Si no hay ancla de torsión, se debe ajustar la columna con la torsión máxima, para prevenir el desenrosque de la tubería de producción. (Ciulla, 2203).

1.5.2 Sarta de varillas o cabillas.

Es un conjunto de varillas unidas entre sí por medio de cuplas formando la mencionada sarta, se introduce en el pozo y de esta forma se hace parte integral del sistema de bombeo de cavidad progresiva. La sarta está situada desde la bomba hasta la superficie. Los diámetros máximos utilizados están limitados por el diámetro interior de la tubería de producción, utilizándose diámetros reducidos y en consecuencia cuplas reducidas, de manera, de no raspar con la tubería de producción (Ciulla, 2203).

Las sartas de varillas se emplean para transmitir el movimiento rotacional del sistema motriz de superficie al rotor de la bomba de profundidad. Las fuerzas ejercidas sobre los vástagos (varillas) son diferentes a las del bombeo mecánico convencional y consisten en una carga axial que en vez de ser cíclica es constante y un torque que transmite el movimiento rotacional y también es constante.

Estas fuerzas se combinan para inducir tensión en estos vástagos. Dicha tensión debe ser mantenida por debajo de un valor máximo permisible para prevenir fallas en los vástagos. El valor máximo se alcanza en la parte superior de la columna de varillas.

1.5.3 Estator.

El estator es un cilindro de acero revestido internamente con un elastómero sintético moldeado en forma de dos hélices adherido fuertemente a dicho cilindro mediante un proceso especial. Este se baja al pozo con la tubería de producción (bombas tipo tubular) o con la sarta de cabillas (bombas tipo insertable). En el estator se encuentra una barra horizontal en la parte inferior del tubo que sirve para sostener el rotor y a la vez es el punto de partida para el espaciamiento del mismo. La Figura 1.7 muestra un corte longitudinal de un estator.

Figura 1.7 Corte longitudinal de un estator

1.5.4 Elastómero.

El elastómero constituye el elemento más delicado de la bomba de cavidades progresivas y de su adecuada selección depende en una gran medida el éxito o fracaso de esta aplicación.

El elastómero reviste internamente al estator y es un polímero de alto peso molecular con la propiedad de deformarse y recuperarse elásticamente, esta propiedad se conoce como resiliencia o memoria, y es la que hace posible que se produzca la interferencia entre el rotor y el estator la cual determina la hermeticidad entre cavidades contiguas y en consecuencia la eficiencia de la bomba (bombeo). Este debe presentar resistencia química para manejar los fluidos producidos y excelentes propiedades mecánicas para resistir los esfuerzos y la abrasión (Chacin, 2003).

1.5.5 Rotor

El rotor (Figura 1.8) es la única pieza que se mueve en la bomba, está fabricado con acero de alta resistencia y recubierto con una capa de material altamente resistente a la abrasión. Se conecta a la sarta de cabillas las cuales le transmiten el movimiento de rotación desde la superficie.

Figura 1.8 Rotor de una BCP

Este consiste en una hélice externa con un área de sección transversal redondeada, tornada a precisión. Tiene como función principal bombear el fluido girando de modo excéntrico dentro del estator, creando cavidades que progresan en forma ascendente.

1.5.6 Niple de paro.

El niple de paro (Figura 1.9) es un tubo de pequeña longitud (corto) el cual se instala bajo el estator (bombas tubulares) y cuyas funciones principales son: (Chacin, 2003)

- Servir de punto tope al rotor en el momento del espaciamiento, para que el rotor tenga el espacio suficiente para trabajar correctamente.
- Brindar un espacio libre al rotor de manera de permitir la libre elongación de la sarta de cabillas durante la operación del sistema.
- Impedir que el rotor y/o las cabillas lleguen al fondo del pozo en caso de producirse rotura o desconexión de estas últimas.
- Servir de punto de conexión para accesorios tales como anclas de gas o de torsión, filtros de arena, etc.

Los más usuales son los de rosca doble, con una rosca hembra en su extremo superior, que va roscada al estator y una rosca macho de la misma medida en su extremo inferior, para permitir instalar debajo el ancla de torsión o cualquier otro elemento.

Figura 1.9 Niple de paro

1.5.7 Ancla de torsión.

Al girar la sarta en el sentido de las agujas del reloj, o hacia la derecha (vista desde arriba) se realiza la acción de girar la tubería también hacia la derecha, es decir hacia el sentido de su desenrosque. A esto se suman las vibraciones producidas en la tubería por las ondas armónicas ocasionadas por el giro de la hélice del rotor dentro del estator, vibraciones que son tanto mayores cuanto más profunda es la instalación de la bomba. La combinación de ambos efectos puede producir el desprendimiento de la tubería de producción, el ancla de torsión evita este problema. Cuanto más la tubería tiende al desenrosque, más se ajusta el ancla. Este equipo se conecta debajo del niple de paro (Esquivel, 2009)

1.5.8 Ancla de gas.

La eficiencia volumétrica de las BCP, al igual que la de otros tipos de bombas, es afectada de manera significativa por la presencia de gas libre en su interior.

Anclas de gas es el nombre que comúnmente se emplea para referirse a los separadores estáticos gas-líquido del fondo del pozo donde la separación se realiza por efecto de la gravedad, aprovechando la diferencia de densidades entre las dos fases (líquido y gas). Generalmente la separación gas — líquido ocurre fuera del ancla desviándose el gas al espacio anular entre el revestidor y la tubería de producción y el líquido es enviado a la bomba, sin embargo, las anclas de gas no son 100% eficientes por lo que una porción del mismo es arrastrado a su interior y de allí a la bomba. Adicionalmente dentro del ancla de gas, por los diferenciales de presión que allí se originan, ocurren separaciones adicionales de gas el cual también es conducido a la bomba (Chacin, 2003).

1.6 Clasificación de las BCP

Las bombas de cavidades progresivas [23] destinadas a la producción de petróleo y gas se clasifican en:

- Bombas tubulares
- Bombas tipo insertables.

1.6.1 Bombas tubulares-

En este tipo de bombas el estator y el rotor son elementos totalmente independientes el uno del otro. El estator se baja en el pozo conectado a la tubería de producción, debajo de él se conecta el niple de paro, anclas de torque, anclas de gas, etc.; y sobre él se instala la tubería de producción. En cuanto al rotor, este se conecta y se baja al pozo con la sarta de cabillas. En general esta bomba ofrece mayor capacidad volumétrica, no obstante, para el reemplazo del estator se debe recuperar toda el completamiento de producción. La Figura 1.10 muestra una sección de una bomba tubular.

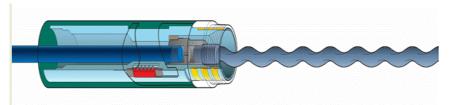


Figura 1.10 Sección de una bomba tubular

1.6.2 Bombas Insertadas.

En este tipo de bombas, a pesar de que el estator y el rotor son elementos independientes, ambos son ensamblados de manera de ofrecer un conjunto único el cual se baja en el pozo con la sarta de cabillas hasta conectarse en un zapato o niple de asentamiento instalado previamente en la tubería de producción. Esta bomba tiene el inconveniente de ofrecer bajas tasas de producción (ya que su diámetro está limitado al diámetro interno de la tubería de producción) pero ofrece la versatilidad de que para su remplazo no es necesario recuperar la tubería de producción con el consiguiente ahorro en tiempo, costos y producción diferida. La Figura 1.11 muestra una bomba tipo insertada.

Figura 1.11 Bomba tipo insertable

1.7 Mantenimiento de las BCP.

Las unidades BCP requieren de poco mantenimiento. En lo siguiente se asume que los componentes de la unidad (cabezal motriz, rodamientos, motor, modelo de la bomba, etc.) han sido correctamente dimensionados o seleccionados.

El único mantenimiento requerido es la lubricación del cuerpo de la cabeza motriz y el prense. Si el salidero es excesivo y no puede ser reducido debe cambiarse la empaquetadura.

La bomba requiere de poco mantenimiento. Cuando la eficiencia no es satisfactoria la bomba debe ser reemplazada. Sin embargo, a través de la observación y las pruebas de taller se puede decidir que uno de los elementos de la bomba el estator, el rotor, o ambos pueden ser

reutilizados. Como el caso del estator con el rotor nuevo o el rotor renovado con un nuevo cromado superficial reutilizado con el estator anterior o con uno nuevo. (Cajigal, 2010).

1.8 Problemas operacionales de las BCP.

En la mayoría de los casos, los sistemas de bombeo por cavidades progresivas, son sencillos de instalar y mantener. Si se realiza una correcta selección e instalación y se hace un seguimiento frecuente las posibilidades de fallas se reducen notablemente

1.8.1 Problemas operacionales en superficie.

Las cabezas motrices de calidad son muy confiables si son mantenidas adecuadamente. Entre los posibles raros problemas están:

- Falla de la varilla pulida o de la abrazadera de esta.
- Falla del freno contra giro.
- Cabeza motriz desenroscada de la T de flujo.
- Mala alineación del rodamiento axial de empuje
- Salidero excesivo en el prense o demasiada vibración en la columna motriz.

1.8.2 Problemas operacionales en subsuelo.

Los siguientes problemas no deben ocurrir si se han seguido los procedimientos correctos de diseño e instalación:

- Falla del estator
- Falla de las cabillas por torque excesivo
- Falla de la tubería por desgaste cabilla / tubería
- Falla del centralizador
- Incorrecto espaciado del rotor.

1.9 Medidas de seguridad para el funcionamiento y reparación de las BCP.

Para la extracción de petróleo con BCP hay que tener en cuenta las siguientes medidas de seguridad:

• Todos los pozos que se explotan por BCP deben tener herméticas las bocas, así como la conexión que permita las salidas del gas que se encuentran en el espacio anular.

- El cabezal de la boca de los pozos no debe sobresalir sobre el nivel de la plataforma más de un metro.
- La empaquetadura debe ser hermetizada por medio de un prense-estopa sólidamente atornillado.
- En la posición más baja del cabezal del BCP la distancia entre la planchuela y la parte superior del prense-estopa no debe ser menor de 20 cm.
- No se debe dejar poner a trabajar la máquina sin barreras del mecanismo de BCP y la correa trapezoidal.
- No se debe hacer trabajos de mantenimiento técnico y de reparación sin antes parar la BCP.
- No se debe rotar la polea motriz con la mano.
- Cualquier clase de trabajo en la boca del pozo o en la BCP se debe realizar con el motor perfectamente desenclochado y frenado.
- Siempre se debe verificar que los frenos estén en buen estado.
- Nunca se debe mover a mano la polea del motor de la BCP para bajar el cabezal.
- Nunca se debe frenar la máquina por medio de la introducción de tubos u otros objetos entre los rayos de la polea.
- Todos los trabajos de inspección y reparación de los motores eléctricos de la unidad de bombeo serán realizados exclusivamente por el electricista.

Antes de arrancar la unidad de bombeo se comprobará que el reductor no está frenado.

1.10 Conclusiones parciales.

- 1. El bombeo por cavidades progresivas es el principal método empleado para la producción de petróleo crudo en el yacimiento Seboruco, debido a que no se justifica la utilización de otros métodos de elevación artificial.
- 2. Debido a las características del crudo presente en el yacimiento Seboruco no se justifica el empleo de los métodos electro sumergible y bombeo hidráulico (estos están diseñados para crudos más ligeros).
- 3. El uso del método de <u>"Gas-Lift"</u> requiere una fuente de gas de alta presión o disponibilidad de instalaciones de compresión lo que, en este caso, no resulta económicamente viable.

4. Las BCP al contrario del bombeo mecánico o convencional no crea pulsaciones en la formación cercana al pozo por lo que genera menor producción de arena en yacimientos no consolidados, presenta un torque constante en la sarta de bombeo dentro del pozo disminuyendo así la fricción y significativamente el consumo de energía, llegando a economizar hasta el 50% la energía comparada con el método convencional.

CAPÍTULO 2. MATERIALES Y MÉTODOS.

2.1. Empresa de Perforación y Extracción de Petróleo de Occidente (EPEPO).

La EPEPO se encuentra ubicada en el kilómetro 37 ¹/₂ de la Vía Blanca municipio Santa Cruz del Norte perteneciente a la provincia de Mayabeque. La empresa se constituyó el 18 de diciembre de 1976. Es una de las 38 empresas que conforman la Unión Cuba-Petróleo (CUPET), subordinada al Ministerio de Energía y Minas. Sus yacimientos e instalaciones se encuentran en todas las provincias occidentales y abarca desde Pinar del Río hasta los límites de Habana-Matanzas por toda la costa norte. (figura 2.1)

FRANJA NORTE DE CRUDOS PESADOS. EPEP OCCIDENTE

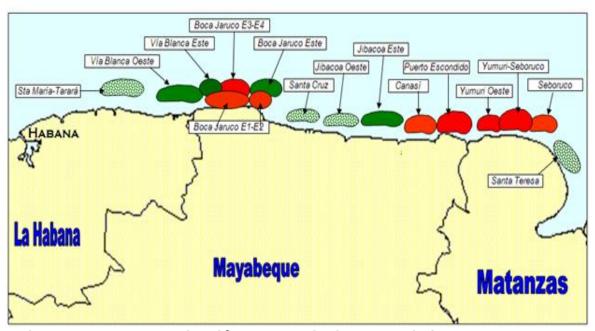


Figura 2.1 Mapa de ubicación de los principales yacimientos de la EPEPO.

Tiene sus antecedentes en importantes descubrimientos realizados a finales de los años 60 del pasado siglo. El año 1969 marca el descubrimiento del yacimiento Boca de Jaruco, durante la perforación de los pozos BJ-1 y BJ-2. Este yacimiento tiene ya 49 años de explotación, siendo el más antiguo de la empresa (Alvarez Castro, 1994).

En sus inicios era una unidad encaminada a controlar y a dirigir la producción de pequeños yacimientos que habían sido nacionalizados por la Revolución (el yacimiento Cruz Verde y de otros descubiertos en los primeros años de la Revolución (Guanabo y Boca de Jaruco).

En el año 1993 después de una década de poco desarrollo, se establecen convenios con las compañías petroleras extranjeras que favorecen de manera notable la producción y el desarrollo de la franja norte del litoral Habana– Matanzas. (Loreley, 2017)

En 1997 se perfora el pozo Puerto Escondido 5, dando paso al descubrimiento de los yacimientos Puerto Escondido, Yumurí, Canasí, Seboruco y Faustino. La exploración y desarrollo de estos campos se realizó y continúa realizándose en su totalidad, mediante la perforación horizontal. Conjuntamente se han introducido nuevas tecnologías en diferentes partes del proceso, como son:

- Mejoras del sistema de bombeo con la introducción de bombas de cavidad progresiva,
 lo que ha permitido un aumento de la productividad por pozo en 2 3 veces más.
- Construcción de ductos para la transportación de petróleo y gas. Lo que trae consigo una reducción de costos de transporte y aumento de la seguridad.
- Construcción de plantas de tratamiento de crudo capaces de reducir el % de agua y de las sales, contribuyendo al ahorro de tiempo y energía.

Los resultados de la exploración y desarrollo de las estructuras de la Franja Norte de crudo pesado, conjuntamente con la aplicación de tecnologías de punta, han permitido un crecimiento notable de la producción de petróleo y gas asociado, que desde el año 2001 se mantiene por encima del millón de toneladas de petróleo extraído. A la empresa le corresponde suministrar sus productos para el consumo en el mercado nacional, por lo que el 100% de la producción de petróleo y gas está dirigida al mismo.

Entre sus mayores consumidores se encuentra la Unión Eléctrica, la Industria del Cemento, la base de Supertanqueros de Matanzas y la población de La Habana (consumidora de gas).

2.2. Caracterización de la elevación artificial del petróleo en el yacimiento de Seboruco.

2.2.1 Descripción del yacimiento Seboruco.

En la Empresa de Perforación y Extracción de Petróleos de Occidente (EPEPO), existen varios yacimientos petrolíferos, uno de ellos es el yacimiento Seboruco, el cuál es el más productivo de la franja norte del litoral Habana— Matanzas con una producción total de 1350 m³/d aproximadamente. El yacimiento Seboruco está ubicado al Norte de la Vía Blanca, a una distancia aproximada de 75 km al Este de La Habana y a 15 km al Oeste de la ciudad de Matanzas (Figura 2.1). Todos los pozos del yacimiento están en el mar y son alcanzados a través de la perforación horizontal.

El yacimiento yace entre 1650 m en la cúpula y el contacto agua petróleo 1850 m y está atravesado por 38 pozos horizontales. El área de desarrollo de este yacimiento comprende alrededor de unos 31,7 km².

Los depósitos petroleros, están constituidos por estructuras en forma de pliegues fuertemente falladas, sirviéndole como sello arcillas y calizas no permeables.

Los referidos pliegues se encuentran separados unos de otros por intercalaciones de Vega Alta, que son nombradas por el pliegue de Veloz que las subyace.

En el campo Seboruco estos pliegues se encuentran más desplazados hacia el sur y han sido atravesados por perforación los llamados Veloz Green, Veloz Gray, Veloz Seboruco, Veloz Blue, Veloz 1, mas al oeste ya en la zona de Yumuri se pueden alcanzar los Veloz 2, Veloz 3, Veloz 4 y hasta el Veloz 7. (Loreley, 2017).

Las formaciones de interés de este sector se corresponden con las formaciones. Ronda y Cifuentes del Jurásico Superior y Cretácico Inferior, perteneciendo ambas al grupo Veloz y en el área aparece un primer apilado de mantos superpuestos, similares a los horizontes productivos en los yacimientos Boca de Jaruco y Puerto Escondido.

La sección Ronda-Cifuentes está compuesta principalmente por carbonatos, pedernal y en menor cantidad arcillas, depositados tanto en un ambiente de aguas someras como en aguas profundas. Las facies de aguas profundas son típicas de la formación Ronda (Cretácico

Superior: Berriasiano - Valanginiano) y del Cifuentes Superior (Jurásico Superior: Tithoniano). Las facies de aguas someras son generalmente típicas de los sedimentos en el Cifuentes Inferior (Jurásico Superior: Kimmeridgiano).

Este yacimiento se caracteriza por ser un colector de tipo masivo, donde los diferentes sobrecorrimientos forman las llamadas escamas en la zona superior plegada, y como la mayoría de las veces se perfora buscando estas escamas se pueden cortar intercalaciones de la formación Vega Alta entre ellos, estas intercalaciones de Vega Alta, son nombradas por el pliegue de Veloz que las subyace, así aparecen las intercalaciones Vega Alta Green, Vega Alta Grey, Vega Alta Seboruco, Vega Alta Blue.

El yacimiento Seboruco produce desde mediados de 1999, cuando el pozo Seb 1 fue puesto en producción. El material de la matriz sostiene la mayor cantidad de petróleo original, con fracturas que proporcionan altas permeabilidades dentro de todo el reservorio. Con un promedio de porosidad del 15% y de ellos el 1,5% porosidad de fracturas, con un corte de agua de 20 % para todo el Yacimiento, se ha estimado en más de 225 millones de m³ y la recuperación a penas ha llegado al 3,78 %. (Loreley, 2018)

Al descubrirse el yacimiento, la presión promedio era de 16693 kPa [164,75 atm], tomada a la profundidad de referencia de 1600 metros. A finales de diciembre del 2017, los pozos de Seboruco perteneciente a Petraf acumulan 8512 Mm³ de petróleo y 1696 MM m³ de gas acompañante y la presión de capa media es de 10900 kPa. La producción del sector Seboruco, declinó durante el 2017 en un 8%, La inundación media del yacimiento es aproximadamente del 20%. La RGP media del Sector Seboruco es de 459 m³/ m³. (Loreley, 2018)

Lo más significativo de los indicadores con relación al 2016, es la disminución de la producción de fluido de los pozos, debido al cierre por el incremento de la RGP en algunos de ellos y al mal dimensionamiento de las BCP en otros.

2.2.2 Análisis de la producción de petróleo en el yacimiento Seboruco.

Para llevar a cabo el análisis de la producción de petróleo en el yacimiento Seboruco se determina el porciento de recuperación en los años 2012-2017; así como el total acumulado hasta finales del 2017.

El porciento de recuperación (% R) es el encargado de ofrecer la información de cuanto ha producido el yacimiento respecto a los recursos <u>"in situ"</u>, además es un indicador de la eficiencia de la elevación artificial instalada en los pozos. Este porciento se calcula mediante la ecuación 2.1. (Loreley, 2018)

$$\%_{R} = \frac{Q_{r}}{Q_{is}} * 100 \tag{2.1}$$

Donde:

%_R: Porciento de recuperación anual.

Q_r: Flujo real que se extrae del yacimiento (m³/año)

Q_{is}: Volúmenes de los recursos <u>"in situ"</u> (m³/año)

Los flujos reales que se extraen del yacimiento anualmente y los volúmenes de los recursos *"in situ"* se encuentran reportados en la Tabla 2.1.

Tabla 2.1. Flujos reales de petróleo y recursos "in situ

Año	Qr (m³/año)	Qis (m³/año
2012	321787,56	13990763,48
2013	606794,90	17336997,14
2014	617497,92	17152720,00
2015	563213,44	16535222,08
2016	393589,99	16901256,03
2017	318174,50	16901256,03
Acumulado	8512439,00	225196798,9

Donde:

Q_r: Flujo real que se extrae del yacimiento (m³/año)

Q_{is}: Volúmenes de los recursos <u>"in situ"</u> (m³/año).

2.3 Obtención de los parámetros adecuados de las BCP.

Para la selección de una bomba por cavidades progresivas se debe tener en cuenta ciertas variables que restringirán dicha selección entre ellas podemos nombrar a:

- Caudal a extraer
- Carga de la bomba

Con el fin de aumentar el rendimiento de los pozos con el mínimo consumo de energía y dar solución al problema científico se propone determinar el caudal y la carga de las bombas a 100m de sumergencia.

En la EPEPO se utilizan programas informáticos, los cuales incluyen sofisticados y complejos algoritmos de cálculo para predecir comportamientos multifásicos, mecánicos e hidráulicos en el pozo.

2.3.1 Cálculo de los caudales a extraer.

El cálculo de los caudales se realiza a través de dos herramientas computacionales: <u>"Analysis</u> <u>Well Production"</u> (AWP) y el Índice de Productividad Real (IPR).

El primer paso es calcular las presiones de fondo reales de cada pozo mediante el AWP. Una foto del programa se muestra en el Anexo 1.

En la tabla 2.2 se muestran los valores de producción de cada pozo reportados en la base de datos de la EPEPO en el mes de Febrero 2018.

Tabla 2.2 Parámetros necesarios para el cálculo de las presiones de fondo

Pozos	Q_{f}	$\mathbf{Q}_{\mathbf{p}}$	Qg	RGP	%BSW	\mathbf{Q}_{w}	ND
Seb 3	20,56	17,69	2200	124	14,0	2,88	821
Seb 4	20,06	19,70	11237	570	1,8	0,36	408
Seb 6	17,86	17,70	21433	1211	0,9	0,16	382
Seb 7	13,41	9,92	6990	705	26,0	3,49	779
Seb 8	26,13	25,61	19967	780	2,0	0,52	102
Seb 9	33,89	31,18	2356	76	8,0	2,71	1040
Seb 10	29,68	29,26	808.14	28	1.4	0,42	854
Seb 11	63,89	63,37	121070	1910	0,8	0,51	Surgente
Seb 12	72,74	69,98	6309	90	3,8	2,76	902
Seb 13	37,70	29,40	1172	40	22,0	8,29	833
Seb 15	36,07	7,03	1055	150	80,5	29,04	786
Seb 16	21,86	15,74	1520	97	28,0	6,12	696
Seb 19	42,01	23,52	1269	54	44,0	18,48	671
Seb 24	158,56	157,31	9385	60	0,8	1,25	661
Seb 25	189,79	188,08	7589	40	0,9	1,71	281
Seb 101	35,48	13,66	1448	106	61,5	21,82	612
Seb 102	11,96	10,04	1693	169	16,0	1,91	850
Seb 103	22,94	19,96	973	49	13,0	2,98	1104
Seb 104	26,78	26,35	11055	420	1,6	0,43	1055
Seb 105	18,87	13,96	5156	369	26,0	4,91	901
Seb 106	17,40	15,66	6126	391	10,0	1,74	987
Seb 150	9,43	7,36	13970	1899	22,0	2,08	482
Seb 170	35,77	34,69	52890	1524	3,0	1,07	162
Seb 200	16,64	15,65	21946	1403	6,0	1,00	557
Seb 210	18,16	12,71	973	77	30,0	5,45	920

Seb 220	34,761	29,89	3051	102	14,0	4,87	950
Seb 230	77,586	33,36	946	28	57,0	44,22	721

Donde:

Q_f: Producción de fluido (m³/d).

Q_p: Producción de petróleo (m³/d)

Q_g: Producción de gas (m³/d).

RGP: Relación gas petróleo (adimensional).

BSW: Cantidad de agua que contiene el crudo (%).

Q_w: Producción de agua (m³/d). ND: Nivel dinámico del pozo (m).

En la tabla 2.3 se muestran los parámetros de las bombas actuales de los pozos, así como la viscosidad y densidad del crudo.

Tabla 2.3 Parámetros de las bombas de cavidades progresivas

Pozos	PB(m)	dt (m)	dc(m)	dcam(m)	ρ (kg/m³)	μ (mPa,s)
Seb 3	917	0,1016	0,0318	0,245	1003,2	17054,40
Seb 4	1066	0,1143	0,0254	0,245	988,3	3933,40
Seb 6	1100	0,1143	0,0318	0,245	994,7	7659,19
Seb 7	1095	0,1143	0,0318	0,245	996,3	7870,77
Seb 8	892	0,1143	0,0318	0,245	998,3	8086,23
Seb 9	1071	0,1143	0,0254	0,245	992,1	4940,66
Seb 10	1094	0,1143	0,0318	0,245	985,8	2957,40
Seb 11	1070	0,1143	0,0254	0,245	986,8	3059,08
Seb 12	1099	0,1143	0,0318	0,245	992,8	5758,24
Seb 13	1067	0,1143	0,0318	0,245	995,5	7814,67
Seb 15	1030	0,1143	0,0318	0,245	993,9	6957,30
Seb 16	1003	0,1143	0,0318	0,245	1004,6	17580,25
Seb 19	1087	0,1143	0,0318	0,245	997,2	7977,60
Seb 24	1231	0,1143	0,0318	0,245	994,3	7158,96
Seb 25	1195	0,1143	0,0318	0,245	997,4	8078,94
Seb 101	1180	0,1143	0,0318	0,245	988,5	3954,00
Seb 102	1090	0,0890	0,0254	0,245	992,3	4961,50
Seb 103	1236	0,0890	0,0254	0,245	994,4	7159,68
Seb 104	1116	0,1143	0,0318	0,245	994,4	7159,68
Seb 105	968	0,1143	0,0318	0,245	986,3	2998,96
Seb 106	1072	0,1143	0,0318	0,245	998,5	8287,55
Seb 150	963	0,1143	0,0318	0,245	997,2	7977,60
Seb 170	1039	0,1143	0,0254	0,245	992,5	4932,73
Seb 200	996	0,1143	0,0318	0,245	981,0	2060,10
Seb 210	1026	0,1143	0,0318	0,245	1016,0	5181,60
Seb 220	1011	0,1143	0,0254	0,245	997,6	8030,68
Seb 230	1018	0,1143	0,0318	0,245	997,9	8073,11

Donde

PB: Profundidad de la bomba (m)

 d_t : Diámetro interior de la tubería (m)

d_c: Diámetro exterior de las cabillas (m)

d_{cam}: Diámetro interior de la camisa (m)

p: Densidad del petróleo (kg/m³)

μ: Viscosidad del crudo (mPa,s)

Para los cálculos se considera que la temperatura de superficie es de 25°C y la del yacimiento 38,5°C.

Los valores de la presión de capa y las presiones en la cabeza de los pozos , tomados de las bases de datos de la EPEPO, se muestran en la tabla 2.4.

Tabla 2.4 Presiones de capa y en la cabeza de los pozos

-		ישואר שביייטיי	,	a ao .co po-	
Pozos	P _{c (kPa)}	P _{cab (kPa)}	Pozos	P _{c (kPa)}	P _{cab (kPa)}
Seb 3	12462,9	709,0	Seb 25	15908,0	1114,0
Seb 4	11449,7	506,0	Seb 101	15087,0	607,0
Seb 6	15300,0	3039,0	Seb 102	15330,0	1317,0
Seb 7	12462,9	810,0	Seb 103	15989,0	911,0
Seb 8	15502,6	1823,0	Seb 104	12128,0	1013,0
Seb 9	13300,0	1418,0	Seb 105	12128,0	1114,0
Seb 10	17463,7	810,0	Seb 106	12128,0	900,0
Seb 11	16371,5	1823,0	Seb 150	16181,6	1114,0
Seb 12	15999,2	1013,0	Seb 170	16232,0	1621,0
Seb 13	15482,0	1013,0	Seb 200	12777,0	1823,0
Seb 15	13334,0	1114,0	Seb 210	12382,0	1114,0
Seb 16	14804,0	1013,0	Seb 220	13303,9	1114,0
Seb 19	16037,0	1418,0	Seb 230	12778,0	1215,0
Seb 24	15908,0	2938,0			

Donde:

P_c: Presión de capa (kPa)

P_{cab}: Presión en la cabeza del pozo (kPa)

Los parámetros RGP y BSW que aparecen en la Tabla 2.2 indican la relación gas petróleo y el porcentaje de agua que contiene el crudo respectivamente. Mediante este porcentaje se pueden obtener los flujos de agua, los cuales son necesarios para desarrollar la simulación en el programa AWP. El BSW se obtiene a partir de los resultados realizados en el laboratorio de la EPEPO.

El segundo paso que se realiza para determinar el caudal a extraer son los gráficos o curvas de Vogel, mediante el programa IPR. Estos gráficos predicen los caudales de la producción a cualquier presión de fondo. Para realizar dichas curvas en cada pozo es necesario conocer: la producción del pozo (Q), la presión de fondo (P_{wf}), la presión del depósito estática (P_e) y la presión de punto de burbuja de petróleo (P_{bp}). La P_{bp} es obtenida del simulador "<u>Heavy oil</u> <u>calculations"</u> o Cálculos de petróleo denso y las P_e y P_{wf} se obtienen de la simulación mediante el programa AWP, ya que son las variables respuesta del mismo. (Cajigal, 2010) (Jonhn, 2005).

El ingeniero Vogel desarrolló en un computador un estudio del comportamiento de afluencia utilizando las aproximaciones de Weller el cual derivó ecuaciones para describir los perfiles de presión y saturación en las cercanías de un pozo perteneciente a un yacimiento subsaturado de hidrocarburos. Con estas ecuaciones, Vogel obtuvo una curva, en la cual se relacionan las presiones y los flujos (P_{wf}/P_e y $Q/Q_{máx}$) y cuya expresión matemática general se observa en la ecuación 2.2. (Chacin, 2003).

$$\frac{Q}{b \, Q_{max}} = 1 - 0.2 * \left(\frac{P_{wf}}{P_{s}}\right) - 0.8 * \left(\frac{P_{wf}}{P_{s}}\right)^{2} \tag{2.2}$$

Donde:

Q: Flujo de crudo (m³/d)

Q_{máx}: Flujo de crudo máximo (m³/d)

Pwf: Presión de fondo del fluido (kPa)

Pe: Presión del depósito estática o presión para el límite externo del fluido (kPa)

Esta expresión se conoce como la "ecuación de Vogel" y un ejemplo de la curva se evidencia en la Figura 2.3 donde se observa que las mayores producciones de crudo se encuentran a menores presiones de fondo. (Jansen, 2004).

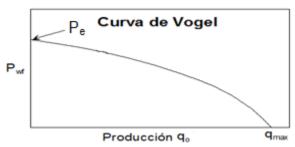


Figura 2.3. Curva de Vogel,

La ecuación de flujo de Darcy, ecuación 2.3, demuestra matemáticamente lo antes expuesto.

$$Q = \frac{1}{5863.7} * \frac{\pi * k * h * \left(P_e - P_{wf}\right)}{\mu * \ln\left(\frac{r_e}{r_w}\right) * B_0}$$
(2.3)

Donde:

Q: Flujo de crudo (m³/d)

k: Permeabilidad del yacimiento (d)

h: Altura efectiva del pozo (m)

Pe: Presión del depósito estática o presión para el límite externo del fluido (kPa)

P_{wf}: Presión de fondo del fluido (kPa)

μ: Viscosidad del crudo (cP)

r_e: Radio externo del pozo(m)

rw: Radio del fondo del pozo (m)

B₀: Factor de volumen de petróleo (adimensional)

La unidad de medida de la permeabilidad del yacimiento (k) es d, lo cual significa Darcy, donde 1 Darcy equivale a 9,86923*10⁻¹³m².

El factor de volumen B₀ se calcula mediante la ecuación 2.4:

$$B_0 = \frac{V_{yac}}{V_{est}} \tag{2.4}$$

Donde:

V_{yac}: Volumen en el yacimiento (m³)

V_{est}: Volumen en condiciones estándar (m³)

El factor anterior como se muestra en la ecuación 2.4, depende de los volúmenes del yacimiento y el estándar de cada pozo, donde este último es a presión de 101,3kPa (1atm) y 15,6°C (Jansen, 2004). En el yacimiento Seboruco la EPEPO reporta que $B_0 = 1,1$ por lo que no aparecerá en la ecuación de Darcy ya que es considerado como uno. Mediante la explicación anterior la ecuación 2.4 se transforma en la siguiente:

$$Q = \frac{1}{5863.7} * \frac{\pi * k * h * \left(P_e - P_{wf}\right)}{\mu * \ln\left(\frac{r_e}{r_w}\right)}$$
(2.5)

Como se puede apreciar en la ecuación 2.5 al disminuir la presión en el fondo del pozo (P_{wf}), la diferencia de presiones (P_e – P_{wf}) en el numerador aumenta y con ello aumenta el flujo de crudo, ya que son directamente proporcionales.

Para realizar las curvas de Vogel en el programa IPR se necesitan los: flujos de crudo y agua (m³/d), la relación gas petróleo (adimensional), la presión de fondo del pozo (kPa), temperatura del yacimiento (°C), presión estática del pozo (kPa), la gravedad específica y los °API del crudo, y la presión de punto de burbuja (kPa). (Tablas 2.5 y 2.6).

La gravedad específica es una medida relativa de la densidad. Como la presión tiene un efecto insignificante sobre la densidad de los líquidos, la temperatura es la única variable que debe ser tenida en cuenta al sentar las bases para la gravedad específica. La densidad relativa de un líquido es la relación de su densidad a cierta temperatura, con respecto al agua a una temperatura normalizada, por ello la SG se calcula mediante la relación 2.6.

$$SG = \frac{\rho_p}{\rho_W} \tag{2.6}$$

Donde:

ρ_p: Densidad del crudo (kg/m³) ρ_w: Densidad del agua (kg/m³)

En la expresión 2.6 la densidad del agua presenta un valor de 1000 kg/m³ a temperatura de 25°C y presión de 101,3 kPa y la densidad del crudo para cada pozo se reporta en la Tabla 2.3.

Los °API son una medida de densidad y precisan cuán pesado o liviano es el petróleo (Barberiie, 2001) (Pujado, 2006) y se determinan mediante la ecuación 2.7.

$$SG = \frac{141.5}{131.5 + ^{\circ}API} \tag{2.7}$$

Donde:

SG: Gravedad específica (adimensional)

°API: Medida de densidad,

Al despejar la ecuación 2.7 se obtiene:

$${}^{\circ}API = \frac{141,5 - (131,5 *SG)}{SG} \tag{2.8}$$

Tabla 2.5 °API y gravedad específica del crudo

Pozos	°API	SG	Pozos	0API	SG
Seb 3	9,55	1,003	Seb 25	10,37	0,997
Seb 4	11,68	0,988	Seb 101	11,65	0,988
Seb 6	10,75	0,995	Seb 102	11,10	0,992
Seb 7	10,53	0,996	Seb 103	10,80	0,994
Seb 8	10,24	0,998	Seb 104	10,80	0,994
Seb 9	11,13	0,992	Seb 105	11,94	0,986
Seb 10	12,04	0,986	Seb 106	10,21	0,999
Seb 11	11,89	0,987	Seb 150	11,94	0,986
Seb 12	11,03	0,993	Seb 170	11,07	0,992
Seb 13	10,64	0,995	Seb 200	12,74	0,981
Seb 15	10,87	0,994	Seb 210	7,77	1,016
Seb 16	9,35	1,005	Seb 220	10,34	0,998
Seb 19	10,40	0,997	Seb 230	10,30	0,998
Seb 24	10,81	0,994		_	

La presión de punto de burbuja (tabla 2.6) se obtiene del programa "<u>Heavy oil calculations</u>", al cual se le introduce los siguientes parámetros: relación gas petróleo (adimensional), gravedad especifica, "API del crudo y la temperatura del yacimiento, Las presiones en el fondo del pozo y la estática son las variables respuestas del programa AWP.

Tabla 2.6 Presión del punto de burbuja en cada pozo

Pozos	P _{bp (38,5°C)}	P _{bp (50°C)}	Pozos	P _{bp (38,5°C)}	P _{bp (50°C)}
Seb 3	22018,2	24220,4	Seb 25	8867,6	9754,5
Seb 4	69090,7	76001,1	Seb 101	18346,6	20184,6
Seb 6	128764,7	141643,6	Seb 102	26843	29527,8
Seb 7	84205,7	92627,8	Seb 103	10176,4	11194,2
Seb 8	91934,6	101129,7	Seb 104	55538,8	61093,7
Seb 9	14248,2	15673,3	Seb 105	48692,5	53562,6
Seb 10	94396,6	103838,0	Seb 106	53409,4	58751,4
Seb 11	178181,2	196013,6	Seb 150	175597,4	193160,3
Seb 12	16420,5	18074,3	Seb 170	152502,2	167755,3
Seb 13	8719,3	9591,4	Seb 200	136469,4	150118,8
Seb 15	24586,3	27045,4	Seb 210	8923,4	9816,0
Seb 16	18143,4	19958,1	Seb 220	18449,7	20295,0
Seb 19	11141,6	12256,0	Seb 230	6817,4	7499,3
Seb 24	11929,8	13123,0		_	

El tercer paso que se realiza para determinar el caudal a extraer es determinar mediante el AWP las presiones de fondo de cada pozo garantizando que la bomba tenga 100 m de sumergencia.

Un sistema bien diseñado permite alcanzar una sumergencia cerca de 100 m y por ende la tasa máxima del pozo, sin embargo, en algunos casos la tasa máxima viene determinada por las características del yacimiento y la ubicación del pozo en el mismo. Este valor se recomienda como medida de seguridad ya que, si llegase a funcionar accidentalmente la bomba en seco, el estator de la bomba podría dañarse. (Fernandez, 2005)

La sumergencia de la bomba no es más que la distancia vertical entre la succión de la bomba (PB) y el nivel dinámico (ND), esto se evidencia en la Figura 2.4 y se determina por la ecuación 2.9. (Chacin, 2003)

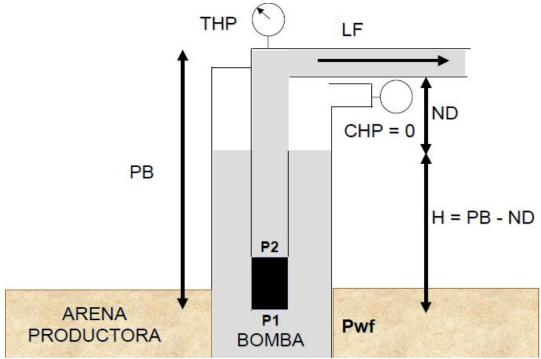


Figura 2.4 Esquema de un pozo en condiciones fluyentes

A continuación, aparece la expresión 2.9.

$$H = PB - ND \tag{2.9}$$

Donde:

H: Sumergencia de la bomba (m) PB: Profundidad de la bomba (m)

ND: Nivel dinámico (m)

A partir de la información de la profundidad de cada bomba y la sumergencia de la misma se fija a 100 m entonces la ecuación 2.9 se despeja para obtener los nuevos niveles dinámicos y se obtiene la ecuación 2.10.

$$ND = PB - H \tag{2.10}$$

Un nivel dinámico está asociado a una tasa de producción determinada; si se aumenta la producción al acelerar la bomba, por ejemplo, baja el nivel y viceversa.

Como se puede observar en la Figura 2.4 y en la ecuación 2.10 si disminuye la sumergencia baja el nivel dinámico, es decir aumenta numéricamente su valor. Esto trae consigo que disminuya el nivel en el espacio anular, disminuyendo así la presión de fondo, lo que genera una mayor afluencia de fluido desde el yacimiento.

Para determinar las nuevas presiones de fondo se introducen en el simulador AWP los parámetros antes expuestos en el primer paso, sustituyendo los actuales niveles dinámicos por los calculados mediante la ecuación 2.10.

Con las nuevas presiones de fondo se entran en las curvas de Vogel de cada pozo como se muestra en la Figura 2.5 y se determinan los nuevos caudales a extraer.

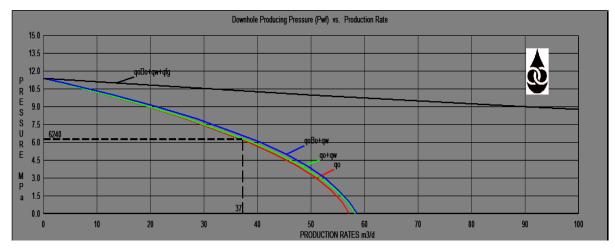


Figura 2.5 Determinación de los nuevos caudales a extraer

2.3.2 Cálculo de la carga de las bombas,

Durante el proceso de extracción de petróleo llega un momento en el cual la energía natural del yacimiento no es suficiente para levantar los fluidos desde el subsuelo hasta la superficie, y una de las formas de suplir dicha energía es a través de la implantación de un método de levantamiento artificial, es decir la energía que falta para llevar el fluido al destino, tiene que ser aportada por una bomba,

Una de las leyes fundamentales de la mecánica de fluidos se expresa mediante la ecuación 2.11 llamada ecuación de Bernoulli, Esta ecuación expresa las relaciones energéticas fundamentales de los fluidos en movimiento estacionario

$$H = \frac{\Delta P}{\rho g} + \Delta z + \frac{\Delta \alpha * v^2}{2 * g} + hp \tag{2.11}$$

Donde:

H: Carga de la bomba (m)

ΔP: Diferencia de presión (Pa)

ρ: Densidad del fluido (kg/m³)

g: Aceleración de la gravedad (g=9,81m/s²)

△z: Diferencia de altura (m)

 $\frac{\Delta \alpha * v^2}{2*g}$: Variación de energía cinética (m)

hp: Pérdidas totales de carga por efectos de fricción (m)

Mediante la herramienta computacional Microsoft Office Excel se programa la ecuación 2.11 y se realiza el balance de energía mecánica de las bombas que extraen crudo de petróleo en los pozos del yacimiento Seboruco. Se considera como plano uno la entrada de la bomba y como plano dos la superficie.

Para calcular el término $\frac{\Delta P}{\rho g}$ se necesitan dos valores de presiones. En este caso son la presión a la entrada de la bomba, la cual es una variable respuesta del simulador AWP y la presión que lee el manómetro en la superficie. La presión que lee el manómetro en la superficie para cada pozo se muestra en la Tabla 2.7 y fueron tomadas de la base de datos de la EPEPO en el mes de Febrero de 2018.

Tabla 2.7 Presiones en la superficie para cada pozo

	zwaw zw. z z osaones on iw superzione puru eucu peze							
Pozos	P _s (kPa)	Pozos	P _s (kPa)					
Seb 3	540	Seb 25	1013					
Seb 4	610	Seb 101	780					
Seb 6	1100	Seb 102	750					
Seb 7	506	Seb 103	640					
Seb 8	800	Seb 104	820					
Seb 9	810	Seb 105	780					
Seb 10	720	Seb 106	850					
Seb 11	1100	Seb 150	640					
Seb 12	1000	Seb 170	900					
Seb 13	830	Seb 200	900					
Seb 15	860	Seb 210	870					
Seb 16	850	Seb 220	900					
Seb 19	940	Seb 230	1050					
Seb 24	321							

Donde:

P_s: Presión en la superficie para cada pozo (kPa)

El término Δz que representa la diferencia de altura se corresponde con la profundidad de la bomba, cuyo valor para cada pozo se muestra en la Tabla 2.3.

El término de la variación de energía cinética $\frac{\Delta \alpha * v^2}{2*g}$ se considera despreciable ya que las velocidades son pequeñas.

Las pérdidas de carga en el sistema son manifestaciones de la disipación de energía mecánica en calor, lo cual ocurre por el efecto friccionar puro del fluido sobre las paredes de las tuberías y también por los efectos de forma que producen cambios de velocidad tanto en magnitud como en dirección. (Rosabal, 2009)

Pasos a seguir para calcular hp:

- Calcular el caudal máximo de fluido o flujo volumétrico como también se le llama, que es capaz de extraer la bomba. Este se corresponde con el caudal obtenido de la curva de Vogel considerando 100 m de sumergencia.
- 2. Calcular la velocidad del fluido por la ecuación 2.12. La misma depende del diámetro equivalente de la tubería y del flujo volumétrico.

$$v = \frac{4*Q}{(\pi*d_g)^2} \tag{2.12}$$

El diámetro equivalente de la tubería de cada pozo se determina por la ecuación 2.13 y los parámetros necesarios para su cálculo se encuentran en las Tablas 2.3.

$$d_s = \sqrt{\frac{4*A}{\pi}} \tag{2.13}$$

Donde:

 d_{ε} : Diámetro equivalente (m)

A: Área de flujo (m²)

El área de flujo se determina por la ecuación 2.14

$$A = \frac{\pi}{4} * (d_t^2 - d_c^2) \tag{2.14}$$

Donde:

 d_t : Diámetro interior de la tubería (m)

 d_{c} : Diámetro exterior de las cabillas (m)

En la Tabla 2.8 se muestran los diámetros equivalentes para cada pozo.

Tabla 2.8 Diámetro equivalente para cada pozo

rabia 2.0 Diametro equivalente para cada pozo							
Pozos	P _s (kPa)	Pozos	P _s (kPa)				
Seb 3	0,097	Seb 25	0,109				
Seb 4	0,111	Seb 101	0,109				
Seb 6	0,111	Seb 102	0,085				
Seb 7	0,109	Seb 103	0,085				
Seb 8	0,109	Seb 104	0,109				
Seb 9	0,111	Seb 105	0,109				
Seb 10	0,109	Seb 106	0,109				
Seb 11	0,111	Seb 150	0,109				
Seb 12	0,109	Seb 170	0,111				
Seb 13	0,109	Seb 200	0,109				
Seb 15	0,109	Seb 210	0,109				
Seb 16	0,109	Seb 220	0,111				
Seb 19	0,109	Seb 230	0,109				
Seb 24	0,109						

3. Calcular el número de Reynolds (Re) por la ecuación 2.15. Este sirve para determinar el régimen de flujo. En EPEPO se considera que el régimen de flujo es laminar por lo tanto Re<2100.

$$Re = \frac{v * d_{g} * \rho}{u} \tag{2.15}$$

Donde:

v: Velocidad del fluido (m/s)

 $d_{\mathbf{g}}$: Diámetro equivalente (m)

ρ: Densidad del petróleo (kg/m³)

μ: Viscosidad del crudo (mPa,s)

4. Calcular el factor de fricción, Este factor depende de Reynolds y de la rugosidad, Como los Reynolds son menores que 2100, el fluido está en régimen laminar y el factor de fricción solo depende del Reynolds y se determina por la ecuación 2.16. (Rosabal, 2009).

$$f = \frac{64}{Re} \tag{2.16}$$

- 5. Calcular los coeficientes de pérdidas locales (k). Este coeficiente depende de los accesorios que estén instalados en el sistema y como en el sistema analizado no hay instalados accesorios este paso no se tiene en cuenta.
- 6. Calcular las pérdidas friccionares por la ecuación 2.17.

$$hp = \left(\frac{f*L}{d_{\varepsilon}} + \sum K\right) * \frac{v^2}{2*g}$$
 (2.17)

Donde:

f: Factor de fricción (adimensional)

L: Longitud de la tubería (m)

d_s: Diámetro equivalente (m)

 $\sum k$: Sumatoria de los coeficientes de pérdidas locales (adimensional)

v: Velocidad del fluido (m/s)

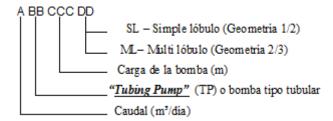
 \boldsymbol{g} : Aceleración de la gravedad (g=9,81m/s²)

En la tabla 2. 9 se muestran las longitudes de la tubería en cada pozo.

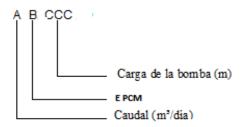
Tabla 2.9 Longitud de la tubería para cada pozo

Pozos	L (m)	Pozos	L (m)	Pozos	L (m)
Seb 3	1063	Seb 13	1294	Seb 104	1210
Seb 4	1290	Seb 15	1229	Seb 105	1004
Seb 6	1284	Seb 16	1066	Seb 106	1139
Seb 7	1473	Seb 19	1205	Seb 150	972
Seb 8	927	Seb 24	1289	Seb 170	1299
Seb 9	1189	Seb 25	1235	Seb 200	1043
Seb 10	1294	Seb 101	1329	Seb 210	1073
Seb 11	1290	Seb 102	1197	Seb 220	1079
Seb 12	1278	Seb 103	1413	Seb 230	1084

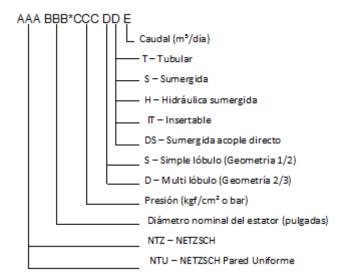
Una vez calculados todos los términos de la ecuación de Bernoulli, se determina la carga de la bomba del sistema a partir de la ecuación 2,11 programada en la herramienta Microsoft Office Excel y se multiplica por una constante (1,3) que es un coeficiente de seguridad en caso de sobrecargas en el sistema.


2.4 Selección de las bombas adecuadas.

Para la selección de las bombas se utiliza los catálogos que se muestran en los anexos 4, 5 y 6. Con los nuevos flujos y la carga de las bombas se entran a los catálogos y se seleccionan las bombas dependiendo del modelo, teniendo en cuenta que la carga y el caudal de las bombas escogidas sean superiores que los del sistema,


Una vez seleccionadas las mismas se comparan los resultados con las bombas instaladas actualmente en cada uno de los pozos.

A continuación, se presenta la nomenclatura de las bombas de cavidades progresivas de subsuelo para los tres tipos de modelos que se utilizan en el yacimiento,


Modelo Kudu.

Modelo PCM.

Modelo Netzsch:

2.5 Valoración económica de las bombas propuestas.

La valoración económica de este trabajo se realiza por el método de rentabilidad Valor actual neto (VAN), mediante el cual se determina la rentabilidad de las bombas y velocidades propuestas, fijando un plazo de recuperación de 10 años.

El VAN no es más que la suma de todos los flujos de efectivo descontados anuales para un proyecto dado, donde existan tanto ingresos como desembolsos y el mismo se determina por la ecuación 2.18. (Rodriguez, 2002).

$$VAN = \Sigma (ADCF)n \tag{2.18}$$

Donde:

ADCF: Flujo de efectivo descontado anual.

El flujo de efectivo descontado anual se obtiene por la ecuación 2.18.

$$A_{DCF} = A_{CF} \cdot f_{d} \tag{2.18}$$

Donde:

ACF: Flujo de caja anual neto

 f_d : Factor de descuento

El factor de descuento se determina por la ecuación 2.19.

$$f_d = \frac{1}{(1+i)^n} \tag{2.19}$$

Donde:

i: Tasa de interés (12%)

n:Horizonte de planeamiento

Para la determinación del ACF se necesitan calcular primeramente una serie de indicadores que miden la factibilidad del proyecto y a continuación se describe el procedimiento para su obtención,

Se definen los ingresos de caja anuales, como la diferencia existente entre los ingresos por las ventas anuales de los productos menos los costos totales anuales o los costos de producción total, requeridos para producir y vender los productos (Fernandez, 2002), Los mismos se obtienen por la ecuación 2.20.

$$ACI = AS - ATE (2.20)$$

Donde:

ACI: Ingresos de caja anuales.

AS: Ventas anuales.

ATE: Costos totales anuales o costos de producción total.

Los ingresos por ventas anuales de crudo, se obtienen por la ecuación 2.21.

$$AS = Prod * Pv \tag{2.21}$$

Donde:

AS: Ingresos por ventas (CUC/año)

Prod: Producción de crudo (m³/año)

Pv: Precio de venta del crudo (CUC/m³)

Los ingresos de caja anuales netos, serán la diferencia entre los ingresos de caja anuales menos el importe anual por impuestos, quedando:

$$ANCI = ACI - AIT$$
 (2.22)

Donde:

ANCI: Ingresos de caja anuales netos.

AIT: Importe anual por impuestos.

El monto anual por impuestos viene dado por la ecuación 2.23

$$AIT = (ACI - AD - AA) \cdot t \tag{2.23}$$

Donde:

AD: Cargos anuales por depreciación.

AA: Monto anual de otros cargos.

t: Razón fraccional de impuestos.

Se considera que la razón fraccional de impuestos tiene un valor de 0,5.

El flujo de caja anual después de los impuestos viene dado por la ecuación 2.24

$$ACF = ANCI - ATC \tag{2.24}$$

Donde:

ACF: Flujo de caja anual neto.

ATC: Gastos anuales de capital.

CAPITULO III RESULTADOS Y DISCUSION.

Este capítulo muestra los resultados del análisis de la producción de petróleo en el yacimiento, el cálculo de los caudales a extraer, así como la carga de las bombas. Además, se muestran los resultados de la selección de las bombas adecuadas y el análisis económico.,

3.1 Análisis de la producción de petróleo en el yacimiento Seboruco.

Para el análisis de la producción se determina el porciento de recuperación anual y el acumulado hasta la fecha; los resultados del mismo se ven reflejados en la Tabla 3.1.

Tabla 3.1 Resultados del cálculo del porciento de recuperación

Año	Qr (m³∕año)	Qis (m³/año	% R
2012	321787,56	13990763,48	2,30
2013	606794,90	17336997,14	3,50
2014	617497,92	17152720,00	3,60
2015	563213,44	16535222,08	3,41
2016	393589,99	16901256,03	2,33
2017	318174,50	16901256,03	1,88
Acumulado	8512439,00	225196798,9	3,78

La actualización de las reservas del sector Seboruco PETRAF se realiza a partir de la evaluación ya existente, por este motivo su actualización se realiza teniendo en cuenta la producción acumulada hasta el 31 de diciembre del 2017.

Al analizar la Tabla 3.1 se observa que los porcientos de recuperación son bajos, aunque hay un ligero aumento en los años 2013 y 2014, esto se debe a que en dichos años entran en funcionamiento nuevos pozos por lo que la producción de petróleo aumenta. Los bajos porcientos de recuperación según la bibliografía consultada (Loreley, 2018), se deben a que la producción de los pozos declina en el tiempo, la viscosidad del crudo es muy elevada y las bombas no están bien dimensionadas.

El volumen de reservas estimadas para el Sector Seboruco se corrobora a través de otros métodos, pues al recurrir al comportamiento de la Presion de Capa así como su extrapolación de acuerdo con los acumulados historicos del sector y en el tiempo, se obtienen cifras muy semejantes.

De este modo los recursos in situ iníciales (OOIP) en categoría "Probadas" para el sector Seboruco se estiman en 225 MMm³ y con un coeficiente de recuperación del 6%, dan como resultado unas reservas iníciales de 13,5 MM m³. (Loreley, 2018)

El petróleo extraído representa el 3,78% de los recursos in situ y el 63,1% de las reservas extraíbles.

En la figura 3.1 se presenta el mapa con la distribución de las reservas en el sector Seboruco (PETRAF confeccionado por el Departamento de Yacimiento de la EPEPO al concluir el año 2017.

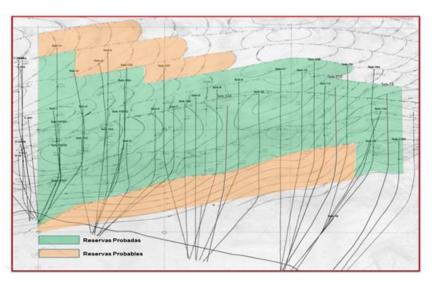


Figura 3.1 Mapa de distribución de las reservas en el yacimiento Seboruco Petraf.

3.2 Resultados del cálculo de los caudales a extraer.

Las presiones de fondo reales que se obtienen en cada pozo se reflejan en la Tabla 3.2.

Tabla 3.2 Resultados de las presiones de fondo mediante el programa AWP

Pozos	P _f (kPa)	Pozos	P _f (kPa)
Seb 3	3921	Seb 25	7076
Seb 4	6211	Seb 101	3136
Seb 6	14432	Seb 102	3888
Seb 7	3306	Seb 103	2480
Seb 8	8857	Seb 104	3351
Seb 9	4003	Seb 105	4615
Seb 10	4009	Seb 106	3180
Seb 11	8832	Seb 150	5695
Seb 12	3992	Seb 170	7215

Seb 13	4200	Seb 200	6267
Seb 15	5483	Seb 210	4811
Seb 16	5787	Seb 220	4639
Seb 19	5942	Seb 230	3917
Seb 24	7269		

Con los resultados anteriores se procede a confeccionar los gráficos de Vogel mediante el programa IPR, La foto de este programa aparece en el Anexo 2.

Un ejemplo de un gráfico de Vogel aparece reflejado en la Figura 3.1, la cual le corresponde al pozo Seb-3.

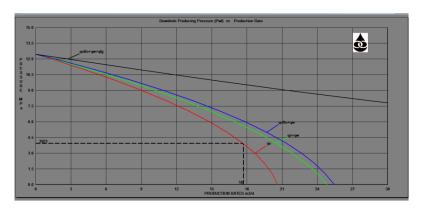


Figura 3.1 Curva de Vogel para el pozo Seb-3

Al observar y analizar la Figura 3.1 se aprecian varias curvas, la que aparece de color rojo representa el flujo de petróleo y la de color verde el flujo de petróleo y agua, El punto de producción o común de la curva roja (color rojo) se encuentra alejado del final de la misma y con ello al flujo máximo, por lo que se propuso disminuir la sumergencia de la bomba hasta 100 m y así obtener menor presión de fondo. Con una disminución de dicha presión se obtiene mayor flujo de petróleo pero también mayor flujo de agua y gas por lo que hay que garantizar que dicha disminución de presión no conlleve a grandes aumentos de los mismos ya que esto traería consigo un mayor tratamiento del crudo a la hora de su refinación y por lo tanto pérdidas económicas.

En el Anexo 3 aparecen reflejadas las curvas de Vogel para los restantes pozos del yacimiento Seboruco, las cuales presentan un comportamiento similar al del pozo Seb-3.

En el tercer paso para la obtención de los caudales a extraer se determina por el AWP las presiones de fondo garantizando que las bombas tengan 100 m de sumergencia, Para garantizar los 100 m de sumergencia se determina los niveles dinámicos a partir de la ecuación 2.10 y los resultados se muestran en la Tabla 3.3.

Tabla 3.3 Niveles dinámicos actuales y niveles dinámicos garantizando 100m de sumergencia

Pozos	ND_a	ND ₁₀₀	Pozos	ND_a	ND ₁₀₀
Seb 3	821	821	Seb 25	251	1095
Seb 4	407	966	Seb 101	612	1080
Seb 6	382	1000	Seb 102	850	990
Seb 7	779	995	Seb 103	1104	1136
Seb 8	101	792	Seb 104	1055	1016
Seb 9	1040	971	Seb 105	901	868
Seb 10	854	994	Seb 106	987	972
Seb 11	Surgente	970	Seb 150	481	863
Seb 12	902	1000	Seb 170	162	939
Seb 13	833	967	Seb 200	557	896
Seb 15	786	930	Seb 210	926	926
Seb 16	696	903	Seb 220	950	910
Seb 19	671	987	Seb 230	721	918
Seb 24	661	1131			

Donde:

ND_a: Nivel dinámico actual de los pozos (m)

ND₁₀₀: Nivel dinámico garantizando 100 m de sumergencia (m).

Como se puede observar en la Tabla 3.3 excepto Seb 9, Seb-104, Seb-105, Seb-106 y Seb-220 los niveles dinámicos a 100 m de sumergencia son mayores que los actuales lo que trae consigo que disminuya el nivel en el espacio anular, disminuyendo así la presión de fondo lo que genera una mayor afluencia de fluido desde el yacimiento lo que provoca un incremento de la producción.

En el caso del Seb-3 y Seb-210 ya presentan actualmente una sumergencia de 100 m; esto podría ocasionar que la bomba en cualquier momento podría trabajar en seco disminuyendo así su eficiencia.

En Seb-9 Seb-104, Seb-105, Seb-106 y Seb-220 la sumergencia actual es inferior a los 100 m debido a esto los niveles actuales son superiores a los calculados garantizando 100 m de

sumergencia; lo que da la posibilidad que en cualquier momento la bomba trabaje en seco disminuyendo así su eficiencia.

Por lo planteado anteriormente se utiliza para la determinación de las nuevas presiones de fondo los niveles dinámicos que garantizan 100 m de sumergencia ya que de esta forma las bombas no trabajan en seco, aumenta la eficiencia de bombeo y se alarga la vida útil de las misma,

Al simular los parámetros de las Tablas 2.2, 2.3, 2.4, 2.5 y 2.6 en el programa AWP, pero sustituyendo los niveles dinámicos actuales por los niveles dinámicos con 100 m de sumergencia reportados en la Tabla 3.3 se obtiene las nuevas presiones de fondo de cada pozo, las cuales quedan reflejadas en la Tabla 3.4.

Tabla 3.4 Resultados de las presiones de fondo mediante el programa AWP

Pozos	P _{fo} (kPa)	Pozos	P _{fo} (kPa)
Seb 3	3921	Seb 25	3959
Seb 4	4004	Seb 101	2391
Seb 6	8872	Seb 102	3431
Seb 7	2577	Seb 103	2385
Seb 8	5362	Seb 104	3476
Seb 9	4224	Seb 105	4534
Seb 10	3537	Seb 106	3230
Seb 11	4697	Seb 150	4188
Seb 12	3667	Seb 170	4086
Seb 13	3740	Seb 200	5016
Seb 15	4953	Seb 210	4811
Seb 16	4931	Seb 220	4829
Seb 19	4309	Seb 230	3521
Seb 24	5812		

Al analizar la Tabla 3.4 se evidencia que las presiones de fondo de las mismas son inferiores a la de la Tabla 3.2, lo que demuestra que es efectivo garantizar 100 m de sumergencia para lograr una mayor afluencia de fluido desde el yacimiento. Solo en el Seb-9, Seb-104, Seb-105, Seb-106 y Seb-220 las nuevas presiones de fondo son mayores que las actuales, esto se debe a que la sumergencia actual de las bomba en estos pozos es inferior a 100 m por lo que al fijar este valor de sumergencia sube el nivel dinámico (disminuye numéricamente su valor) y aumenta el nivel en el espacio anular y aumenta la presión de fondo.

Con las nuevas presiones de fondo reportadas en la Tabla 3.4 se entra a las curvas de Vogel de cada pozo (color verde) y se seleccionan los nuevos caudales a extraer.

En la Tabla 3.5 se ven reflejados los resultados de los nuevos caudales a extraer por cada pozo.

Tabla 3.5 Resultados de los nuevos caudales a extraer mediante las curvas de Vogel

mediante las cul vas de vogei						
Pozos	$Q_n(m^3/d)$	Pozos	$Q_n(m^3/d)$			
Seb 3	26,58	Seb 25	232,00			
Seb 4	26,00	Seb 101	39,00			
Seb 6	110,00	Seb 102	13,00			
Seb 7	15,00	Seb 103	23,00			
Seb 8	36,00	Seb 104	26,00			
Seb 9	32,00	Seb 105	17,00			
Seb 10	32,00	Seb 106	17,00			
Seb 11	86,00	Seb 150	105,00			
Seb 12	75,00	Seb 170	44,00			
Seb 13	90,00	Seb 200	19,00			
Seb 15	38,00	Seb 210	18,52			
Seb 16	23,00	Seb 220	34,00			
Seb 19	46,00	Seb 230	30,00			
Seb 24	175,00		_			

Comparando los resultados de la Tabla 3.5, a los cuales se les modifica la sumergencia de la bomba a un valor adecuado (100 m) con la producción de fluido reportada en la Tabla 2.2, donde los pozos no presentan una sumergencia adecuada de las bombas, se evidencia que los flujos son más altos en la Tabla 3.5 que en la Tabla 2.2 a excepción del Seb-9, Seb-104, Seb-105, Seb-106 y Seb-220, lo que demuestra que es efectivo garantizar 100 m de sumergencia de las bombas ya que aumentan los flujos de crudo, excepto en 5, en todos los pozos. Esta anomalía en el Seb-9, Seb-104, Seb-105, Seb-106 y Seb-220 se debe a que las nuevas presiones de fondo como se explica son mayores que las actuales, pero por razones de seguridad y de alargar la vida útil del equipo se propone a pesar de obtener menos cantidad de fluido trabajar con las nuevas presiones de fondo.

En la Tabla 3.6 se reportan los incrementos de flujo de petróleo para cada pozo al modificar la sumergencia de las bombas, Los datos de flujo de petróleo sin modificar la sumergencia se

encuentran en las Tabla 2.2 y los flujos de petróleo al modificar la sumergencia son extraídos de las curvas de Vogel (color rojo) a las nuevas presiones de fondo.

Tabla 3.6 Incremento de flujo de petróleo al variar la sumergencia de las bombas

Pozos	$Q_{PNS}(m^3/d)$	$Q_{PS}(m^3/d)$	Inc(m ³ /d)
Seb 3	17,69	26,58	8,89
Seb 4	19,70	26,00	6,30
Seb 6	17,70	110,00	92,30
Seb 7	9,92	15,00	5,08
Seb 8	25,61	36,00	10,39
Seb 9	31,18	32,00	0,82
Seb 10	29,26	32,00	2,74
Seb 11	63,37	86,00	22,63
Seb 12	69,98	75,00	5,02
Seb 13	29,40	90,00	60,60
Seb 15	7,03	38,00	30,97
Seb 16	15,74	23,00	7,26
Seb 19	23,52	46,00	22,48
Seb 24	157,80	175,00	17,20
Seb 25	188,08	232,00	43,92
Seb 101	13,66	39,00	25,34
Seb 102	10,04	13,00	2,96
Seb 103	19,96	23,00	3,04
Seb 104	26,35	26,00	-0,35
Seb 105	13,96	17,00	3,04
Seb 106	15,66	17,00	1,34
Seb 150	7,36	105,00	97,64
Seb 170	34,69	44,00	9,31
Seb 200	15,65	19,00	3,35
Seb 210	12,71	18,52	5,81
Seb 220	29,89	34,00	4,11
Seb 230	33,36	30,00	-3,36

Donde:

Q_{PNS}: Flujo de petróleo cuando no se modifica la sumergencia de las bombas (m³/d)

Q_{PS}: Flujo de petróleo cuando se varía la sumergencia de las bombas a 100 m (m³/d)

Inc: Incremento del flujo en cada pozo (m³/d).

Al analizar la Tabla 3.6 se evidencia que, si se modifica la sumergencia de las bombas a 100m en el yacimiento Seboruco, diariamente se extraerían aproximadamente 488 m³ más de lo que actualmente se produce. Los resultados anteriores muestran que esta alternativa se puede

aplicar a todos los pozos del yacimiento Seboruco, ya que dicha alternativa aportaría nuevas ganancias para la EPEPO.

3.3 Resultados del cálculo de la carga de las bombas

En la Tabla 3.7 se muestran las presiones de entrada de la bomba de cada que se obtienen con la aplicación del programa AWP.

Tabla 3.7 Resultados de las presiones a la entrada de la bomba mediante el programa AWP

mediante el programa Atti						
Pozos	P _B (kPa)	Pozos	P _B (kPa)			
Seb 3	1189	Seb 25	1624			
Seb 4	965	Seb 101	1068			
Seb 6	4347	Seb 102	1843			
Seb 7	1067	Seb 103	1401			
Seb 8	2392	Seb 104	1514			
Seb 9	1953	Seb 105	1326			
Seb 10	1292	Seb 106	1394			
Seb 11	2391	Seb 150	1626			
Seb 12	1414	Seb 170	2173			
Seb 13	1517	Seb 200	2386			
Seb 15	1627	Seb 210	1646			
Seb 16	1516	Seb 220	1628			
Seb 19	1956	Seb 230	1620			
Seb 24	3435					

Donde:

P_B: Presión a la entrada de la bomba (kPa)

Los resultados del término $\Delta P/\rho g$ se muestran en la tabla 3.8.

Tabla 3.8 Resultados del término ΔP/ρg para cada pozo

Pozos	ΔP/pg (m)	Pozos	ΔP/pg (m)
Seb 3	-66	Seb 25	-41
Seb 4	-37	Seb 101	-30
Seb 6	-333	Seb 102	-113
Seb 7	-57	Seb 103	-78
Seb 8	-163	Seb 104	-72
Seb 9	-117	Seb 105	-87
Seb 10	-59	Seb 106	-56
Seb 11	-133	Seb 150	-107
Seb 12	-53	Seb 170	-129
Seb 13	-76	Seb 200	-154
Seb 15	-79	Seb 210	-78

Seb 16	-68	Seb 220	-74
Seb 19	-104	Seb 230	-60
Seb 24	-340		

El cálculo de las pérdidas de carga en el sistema (hp) se realizó por la ecuación 2.17 y los resultados se muestran en la Tabla 3.9.

Tabla 3.9 Resultados del cálculo de las pérdidas de carga en el sistema (hp) para cada pozo

Pozos	υ (m/s)	$v^2/2g$ (m)	Re	f	f*L/d _e	hp(m)
Seb 3	0,03	5,4*10 ⁻⁵	0,18	346	3815235	206,13
Seb 4	0,03	4,85*10 ⁻⁵	0,86	74	857480	41,60
Seb 6	0,13	9,66*10 ⁻⁴	1,99	32	370153	357,43
Seb 7	0,02	1,49*10 ⁻⁵	0,94	269	3610064	53,88
Seb 8	0,04	$9,87*10^{-5}$	0,60	107	905975	89,41
Seb 9	0,04	$7,81*10^{-5}$	0,88	73	779172	60,89
Seb 10	0,04	$7,86*10^{-5}$	1,43	45	526853	41,08
Seb 11	0,10	5,31*10 ⁻⁴	3,67	17	201915	107,17
Seb 12	0,09	4,28*10 ⁻⁴	1,74	37	429221	183,85
Seb 13	0,05	1,16*10 ⁻⁴	0,65	99	1160924	127,65
Seb 15	0,05	1,16*10 ⁻⁴	0,73	88	983218	108,11
Seb 16	0,03	4,03*10 ⁻⁵	0,18	363	3522506	141,89
Seb 19	0,06	1,61*10 ⁻⁴	0,77	83	917980	146,65
Seb 24	0,21	$2,33*10^{-3}$	3,26	20	230320	537,11
Seb 25	0,22	$2,33*10^{-3}$	3,71	17	171078	425,12
Seb 101	0,05	1,16*10 ⁻⁴	1,31	49	591976	68,56
Seb 102	0,03	3,55*10 ⁻⁵	0,45	142	1999422	71,00
Seb 103	0,05	1,11*10-4	0,55	116	1920796	213,50
Seb 104	0,03	5,15*10 ⁻⁵	0,48	132	1454918	74,89
Seb 105	0,02	2,20*10 ⁻⁵	0,75	85	780138	17,17
Seb 106	0,02	2,20*10 ⁻⁵	0,27	233	2415108	53,16
Seb 150	0,01	8,40*10 ⁻⁶	0,18	363	32116256	27,00
Seb 170	0,05	1,39*10 ⁻⁴	1,17	55	633236	88,53
Seb 200	0,02	$2,75*10^{-5}$	1,21	53	500649	13,76
Seb 210	0,02	$2,51*10^{-5}$	0,05	134	13150866	330,10
Seb 220	0,04	8,30*10 ⁻⁵	0,56	115	1109486	92,04
Seb 230	0,09	4,87*10-4	1,33	48	476071	232,01

Donde:

v: Velocidad del fluido (m/s)

g: Aceleración de la gravedad (g=9,81m/s²)

Re: Número de Reynolds (adimensional)

f: Factor de fricción (adimensional)

L: Longitud de la tubería (m)

 d_{ϵ} : Diámetro equivalente (m)

hp: Pérdidas de carga en el sistema (m)

Como se observa en la misma el número de Reynolds para cada pozo es menor que 2100 por lo que el régimen de flujo es laminar, lo que se corresponde con la predicción de la EPEPO.

Una vez calculados todos los términos de la ecuación de Bernoulli, se determina para todos los pozos la carga de la bomba del sistema a partir de la ecuación 2.11 y se multiplica por una constante (1,3) que es un coeficiente de seguridad en caso de sobrecargas en el sistema, Los resultados del cálculo de la carga de las bombas se muestran en la Tabla 3.10.

Tabla 3.10 Resultados del cálculo de la carga de las bombas para cada pozo

Pozos	H (m)	H(kPa)	Pozos	H (m)	H(kPa)
Seb 3	1374,38	135,2	Seb 25	1992,28	194,4
Seb 4	1392,29	134,9	Seb 101	1584,52	153,6
Seb 6	1462,64	142,6	Seb 102	1363,28	132,7
Seb 7	1418,93	138,6	Seb 103	1782,99	173,9
Seb 8	1064,15	104,2	Seb 104	1455,69	142,0
Seb 9	1318,77	128,3	Seb 105	1167,02	113,9
Seb 10	1398,99	135,3	Seb 106	1390,49	136,2
Seb 11	1356,98	131,3	Seb 150	1155,93	113,0
Seb 12	1599,11	155,7	Seb 170	1298,53	126,4
Seb 13	1461,62	142,7	Seb 200	1111,90	107,0
Seb 15	1377,32	134,3	Seb 210	1661,71	165,6
Seb 16	1400,49	138,0	Seb 220	1334,22	130,8
Seb 19	1468,70	143,6	Seb 230	1598,24	151,5
Seb 24	1856,93	181,1			

Donde:

H: Carga de las bombas (m) y (kPa)

Como se observa en la Tabla 3.10 las cargas son menores que 24 000 kPa, que es la carga máxima que soporta una BCP, por lo que las bombas que se seleccionan a continuación son todas de cavidades progresivas,

3.4 Resultados de la selección de las bombas.

La selección de las nuevas bombas se realiza a partir de los resultados que se muestran en las tablas 3.5 y 3.10 con ayuda de los catálogos que se muestran en los Anexos 4,5 y 6. Estos resultados se presentan en la Tabla 3.11.

Tabla 3.11 Resultados de la selección de las bombas adecuadas para cada pozo

Pozos	Fecha de instalación	Bomba actual	Bomba nueva
SEB 3	21/12/2016	PCM 60 E 1800	PCM 60 E 1800
SEB 4	21/03/2017	PCM 60 E 1800	PCM 60 E 1800
SEB 6	10/09/2014	NTZ 450X150 STM 68	NTZ 500X150 STM 100
SEB 7	20/12/2017	NTZ 400X180 ST 25	NTZ 400X180 ST 26
SEB 8	07/03/2017	NTZ 350X150 SIT 60	NTZ 350X150 SIT 60
SEB 9	25/12/2014	NTZ 450X150 STM 68	NTZ 350X200 STM 25
SEB 10	20/12/2017	NTZ 350X150 SIT 60	NTZ 350X150 SIT 60
SEB 11	09/09/2011	NTZ 500X150 STM 60	NTZ 500X150 STM 100
SEB 12	10/12/2017	PCM 80 E 1800	PCM 80 E 1800
SEB 13	03/02/2015	NTZ 450X150 STM 68	NTZ 400X150 ST 62
SEB 15	20/03/2016	PCM 13 E 2000	PCM 40 E 1800
SEB 16	29/04/2017	PCM 80 E 1800	PCM 80 E 1800
SEB 19	26/05/2017	120 K 1500	120 K 1500
SEB 24	15/02/2017	NTZ 500X150 STM 140	NTZ 400X200 DT 110
SEB 25	09/04/2017	120 K 1500	NTZ 400X200 DT 110
SEB 101	06/05/2017	PCM 80 E 1800	PCM 80 E 1800
SEB 102	22/10/2016	NTZ 400X180 ST 33	NTZ 400X180 ST 33
SEB 103	30/11/2017	NTZ 400X180 ST 25	NTZ 400X180 ST 25
SEB 104	09/12/2014	NTZ 450X150 STM 68	NTZ 350X200 ST 25
SEB 105	11/10/2014	NTZ 450X150 STM 68	NTZ 350X200 ST 25
SEB 106	11/05/2014	NTZ 450X150 STM 68	NTZ 350X200 ST 25
SEB 150	08/03/2015	NTZ 450X150 STM 68	NTZ 350X150 ST 16,4
SEB 170	14/04/2017	NTZ 550X150 STM 100	NTZ 550X150 STM 100
SEB 200	22/04/2014	NTZ 450X150 STM 68	NTZ 350X165 ST 25
SEB 210	27/10/2016	PCM 60 E 1800	PCM 60 E 1801
SEB 220	01/02/2014	NTZ 550X150 STM 100	NTZ 400X240 ST 33
SEB 230	04/05/2017	PCM 80 E 1800	PCM 80 E 1801

Como se observa en la Tabla 3.11 hay 13 pozos (sombreados en azul) en los cuales las bombas actuales no coinciden con las nuevas escogidas, esto se debe a que estas no son las adecuadas para obtener los índices de producción requeridos, ya que no se encuentran bien dimensionadas, En los restantes pozos las bombas actuales coincidieron con las nuevas escogidas, por lo que para alcanzar los índices de producción requeridos y garantizar 100 m de sumergencia se propone cambiar la velocidad de operación, En la Tabla 3,12 se muestran los resultados de los cambios de velocidad en las bombas de los pozos que coinciden las bombas actuales con las nuevas escogidas.

Tabla 3.12 Resultados de los cambios de velocidad

Pozos	Bomba	v _A (rpm)	v_N (rpm)
SEB 3	PCM 60 E 1800	60	60
SEB 4	PCM 60 E 1800	151	195
SEB 7	NTZ 400X180 ST 25	101	120
SEB 8	NTZ 350X150 SIT 60	75	100
SEB 10	NTZ 350X150 SIT 60	100	110
SEB 12	PCM 80 E 1800	150	160
SEB 16	PCM 80 E 1800	100	110
SEB 19	120 K 1500	90	100
SEB 101	PCM 80 E 1800	97	107
SEB 102	NTZ 400X180 ST 33	75	80
SEB 103	NTZ 400X180 ST 25	151	161
SEB 170	NTZ 550X150 STM 100	125	155
SEB 210	PCM 60 E 1800	50	50
SEB 230	PCM 80 E 1800	175	180

Donde:

 v_A : Velocidad de operación (rpm)

 v_N : Velocidad de operación nueva (rpm)

A los pozos Seb-3 y Seb-210 como se observa en la Tabla 3,12 se propone mantener la velocidad, pues la sumergencia actual es igual a 100m.

3.5 Valoración económica.

Para poder obtener los ingresos por ventas anuales, se conocen las siguientes informaciones:

- El precio de un m³ de petróleo es de 176,89 CUC/m³, valor obtenido del departamento de economía de la EPEPO en el mes de febrero de 2018.
- La EPEPO trabaja los 365 días del año.

El yacimiento Seboruco actualmente presenta un flujo de petróleo de 938,8 m³/d, datos obtenidos al sumar los flujos de petróleo de todos los pozos que se encuentran en las Tablas 2.2 y los mismos se obtienen mediante las mediciones que se realizaron en la EPEPO en el mes de Febrero de 2018. Al variar la sumergencia de las bombas se obtuvo como resultado que se incrementa la producción en 488,8 m³ más de lo que se produce actualmente, sumando el incremento y la producción sería un total de 1487,7 m³/d lo que produciría este yacimiento al garantizar una sumergencia adecuada.

Con ayuda de la ecuación 2.21 y se toma como referencia una producción de 1487,7 m³/d de crudo, los ingresos por ventas al año tienen un valor de 96053127 CUC/año.

Los costos de producción total según el departamento de economía de la EPEPO **son** de 105,6 CUC/m³, por lo que para una producción de 1487,7 m3/tiene un valor de 157101 CUC/d, lo cual es al año un total de 57 341 909 CUC/año.

Como se desea reemplazar solo una parte de las bombas del yacimiento Seboruco, para la determinación de los gastos anuales de capital o costos de inversión total solo se necesita conocer el costo de las nuevas bombas y el costo por su instalación. El precio de una BCP actualmente es de 32000 CUC ya puesta en el almacén (dato suministrado por el departamento de economía de la EPEPO), y el costo de instalación de las mismas es de 45000 CUC, por lo que si se quiere instalar 13 BCP nuevas el gasto anual de capital (ATE) tiene un valor de 1 001 000 CUC.

La empresa realiza siete reparaciones de las bombas al año y las mismas tienen un costo de 32000 CUC y una bomba se repara cada dos años.

Después de determinados todos los indicadores se realiza por la ecuación 2.18 el cálculo del VAN cuyo resultado se muestra en el Anexo 7 donde se puede observar que el valor actual neto cambia de signo en el primer año de operación demostrando así la factibilidad de los cambios de bombas y las velocidades de operación, ya que la inversión se recupera en un año y a partir de este año lo que se obtiene es ganancia neta con relación a la inversión.

3.6 Conclusiones parciales

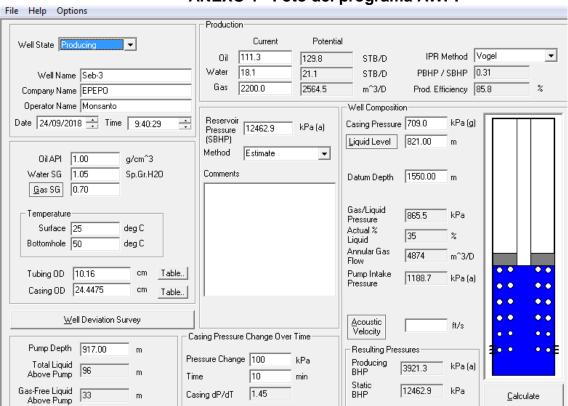
- 1. Los porcientos de recuperación de petróleo son bajos en comparación con el promedio acumulado hasta Diciembre, obteniéndose los siguientes valores: 2,3, 3,5, 3,6, 3,4; 2,3 y 1,88 respectivamente. El petróleo extraído hasta Diciembre del 2017 representa el 3,78 % de los recursos in situ y el 63,1% de las reservas extraíbles.
- 2. Se demuestra que del total de pozos que se encuentran trabajando en el yacimiento Seboruco, 13 presentan un incorrecto diseño de las bombas, los cuales son: Seb-6, Seb-9, Seb-11, Seb-13, Seb-15, Seb-24, Seb-25, Seb-104, Seb-105, Seb-106, Seb-150, Seb-200 y Seb-103 de los pozos del yacimiento tienen un incorrecto diseño de la bomba.
- 3. Las cargas de las bombas obtenidas son menores que 24 000 kPa que es la máxima que soporta una BCP.
- 4. Los pozos Seb 3 y Seb 210 mantienen los regímenes actuales de producción, los restantes pozos están bien diseñados pero para garantizar 100m de sumergencia y alcanzar los índices de producción requeridos se propone variar la velocidad de operación.
- 5. Al determinar las cargas y los caudales a 100 m de sumergencia de las BCP, se eleva la producción de petróleo crudo en el yacimiento Seboruco en 488,8 m3/d de petróleo.
- 6. Todas las bombas que se proponen cambiar tiene como mínimo más de dos años de explotación a excepción de los pozos Seb-24 y Seb-25 que aun tiene instaladas las bombas de sacrificio, lo que facilita la compra de las mismas.
- 7. La inversión se recupera en un año; demostrándose así la factibilidad de los cambios de bombas y las variaciones de las velocidades.

CONCLUSIONES

- 1. Al determinar las cargas y los caudales a 100 m de sumergencia de las BCP, se eleva la producción de petróleo crudo en el yacimiento Seboruco en 488,8 m3/d de petróleo lo que valida la hipótesis.
- 2. En los últimos años (2012, al 2017) los porcientos de recuperación de petróleo son bajos, obteniéndose los siguientes valores: 2,3; 3,5; 3,6; 3,4; 2,3 y 1,78 respectivamente con respecto al promedio acumulado de 3.78 %
- 3. Del total de pozos del yacimiento 13 presentan un incorrecto diseño de las bombas.
- 4. La inversión se recupera en un año.

RECOMENDACIONES

- 1. Sustituir las bombas que se encuentran mal dimensionadas por las BCP propuestas en el presente trabajo, lo que traería como resultado la obtención de los caudales deseados, Para ellos se proponen la solicitud de compra de las mismas.
- 2. Cambiar las velocidades de operación en las bombas que se encuentran actualmente bien dimensionadas para así obtener mayores índices de producción y garantizar una sumergencia óptima.
- 3. Construir una instalación básica de medición (IBM) con el objetivo de bajar las presiones de superficie de las cabezas de los pozos de la compañía PETRAF para así obtener mayor producción de petróleo y mayor cantidad de gas hacia la planta de ENERGAS de Puerto Escondido.


BIBLIOGRAFÍA

- 1. Alvarez Castro, J otros. 1994. Evaluacion del potencial de exploracion del Bloque 7. Region Habana Matanzas. s.l.: CIDP, 1994. Archivo EPEPO.
- 2. Autores, Colectivo. 2002. Technical Data Handbook. 5. Houston: Houston, 2002.
- 3. —. 1997. Updated field case studies on application and performance of bootm drive progressiing cavity pumps. Rio de Janeiro : s.n., 1997.
- 4. Barberiie, E. 2001. El pozo Ilustrado. 5. s.l.: Caracas, 2001.
- 5. Boyun, G. 2007. Petroleum Production Engineering. A computer-assisted Approach. s.l.: Elsevier Science & Tecnology Books, 2007.
- 6. Brunings, C. Toussaint, L. 1998. Efficiencies Higher than with ESP Systems. Technological Advances in Rod Pumping. 1998.
- 7. Cajigal, Armando. 2010. Bombas de Cavidad Progresiva. La Habana : s.n., 2010.
- 8. Cajigal, Armando Lopez G. 2013. Explotación de Pozos por Bombeo. s.l.: Centro Politecnico del Petroleo, 2013.
- 9. Cajigal, Armando. 2010. Produccion de Petroleo y Gas. 2010.
- 10. Chacin, N. 2003. Bombeo de Cavidad Progresiva. 2003. ESp. Oil Engineering Consultants Instalaciones de PDVSA.
- 11. Ciulla, F. 2203. Principios fundamentales para diseños de bombas con cavidad progresiva. 2203.
- 12. Esquivel, S. 2009. Sistema de cavidades progresivas aplicado a pozos desviados. Mexico D.F.: Universidad Autonoma de Mexico, 2009.
- 13. Farias, L Hirschfeldt. M. 2006. Explotacion de pozos con PCP en yacimiento Diadema. 2006.
- 14. Fernandez, A. 2005. Sistema de Cavidades Progresivas, diseño, operacionen y optimizacion de su funcionamiento. s.l.: Facuktad de Ingenieria UNAM, 2005.
- 15. Fernandez, E Gonzalez, G. 2002. Ingenieria Economica para Ingenieros Quimicos. 2002.

- 16. Fernandez, Rolando. 2001. Introduccion a la Industria Petrolera. [ed.] Ministerio Energia y Minas. Union Cudapetroleo. La Habana: s.n., 2001.
- 17. Gamboa, J. 2008. Diseño de Instalaciones dwe Levantamiento Artificial por Bombeo de Cavidades Progresivas. Cracas: s.n., 2008.
- 18. Gamboa, J. 2000. Simulación computacional de unaBPC sin interferencia. Caracas : s.n., 2000. MAESTRIA.
- 19. Garcia, R. 2003. Geologia General y Estratigrafia. La Habana: Centro de Investigaciones del Petroleo, 2003.
- 20. Gonzalez, J. R., Puerto. 2012. Geologia del Petroleo. La Habana: s.n., 2012.
- 21. Gutierrez, M Aquiles J. 2009. Optimizacion de la produccion por sistema PCP. Lima : s.n., 2009. Tesis de Grado.
- 22. Hirschfeldt, M. 2008. Manual de Bombeo de cavidades Progresivas. 2008.
- 23. Howard, B Richardson T. 2012. Petroleum Engineering Handbook. 2012.
- 24. Ibañez, S Pulido, E y Ortiz, W. 2011. Metodos de bombeo por cavidades progresivas. [ed.] Escuela de ingenieria de petroleo. s.l.: Universidad Industrial de Santander, 2011.
- 25. Jansen, J Currie, P., 2004. Modelling and Optimization of Oiland Gas. 2004.
- 26. Jonhn, G. 2005. Bombeo Mecanico, Optimizacion. maracaibo: s.n., 2005.
- 27. KUDU Industries. 2015. VH 60 9,3T operation Manual. 8. 2015.
- 28. Loreley, C. 2017. Informe Anual 2016 Yacimiento Seboruco Petraf. Yacimiento, EPEPO. Mayabeque: s.n., 2017.
- 29. Loreley, C. 2018. Informe Anual 2017 de Yacimiento Campo Seboruco. Yacimiento, EPEPO. Mayabeque: s.n., 2018.
- 30. Netzsch. 2002. Bombas de Cavidad Progresiva. Pomero de Brasil: s.n., 2002.
- 31. Oliver, A. 2002. Estudio Experimental del desempeño de una BPC de estator rigido con fluido bifasico. Caracas : s.n., 2002. Maestria.
- 32. Peñalosa, S. 1999. Estudio de Optimizacion de Sistema de Bombeo por Cavidades Progresivas. Caracas : s.n., 1999.
- 33. Pujado, P Jones.D. 2006. Handbook of Petroleum Processing. s.l.: Springer, 2006.

- 34. Rodriguez, G. 2002. .Los criterios de decisión para la evaluación de inversiones. Algunas reflecciones. 1. La Habana : Economia y Desarrollo, 2002.
- 35. Rosabal, J. 2009. Hidrodinamica y separaciones mecanicas. s.l.: Felix Varela, 2009.
- 36. Schlumberger. 2009. Completions Hydraulics Handbook. 2009.
- 37. Thomas, J.E. 2001. Fundamentos Ingenieria de Petroleo. 2. s.l.: Interciencia, 2001. Vol. 2.
- 38. Wariquier, J. 2000. El Refino del Petroleo, Petroleo Crudo. Productos petroliferos. 2000.

ANEXOS

ANEXO 1 Foto del programa AWP.

ANEXO 2 Foto del programa IPR

Well Information Company : EPEPO Location : Wellname : SEB-3		Field : Seboruc Date : 3-4-2016	_
Pressures Static Reservoir: 12462.9 kPa Prod. Bottomhole: 3921.3 kPa	Water:	17.7 m ³ /d	Sandface Surface Calculate
Oil Gravity : 9.55 • API Relative Gas Gravity : 0.65 Reservoir Temperature : 50.0 • C	Bubbl Formation Vol	relations Used If I e Point Pressure : ume Factor (B ₀) : as-Oil Ratio (R _S) :	24220.4 kPa

ANEXO 3 Curvas de Vogel para cada pozo,

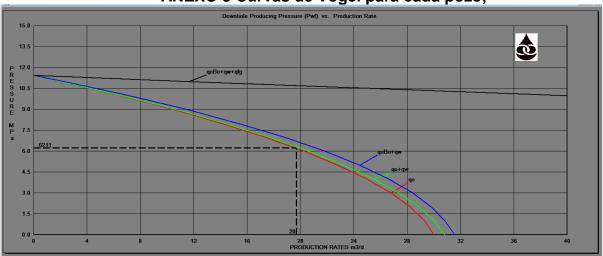


Figura A3.1 IPR Seb 4

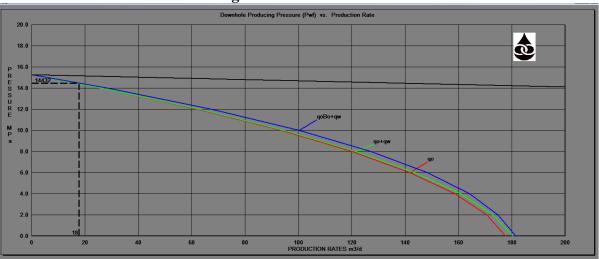


Figura A3.2 IPR Seb 6

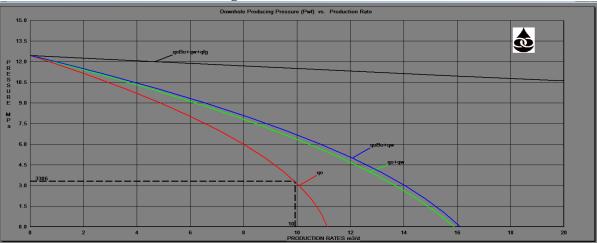
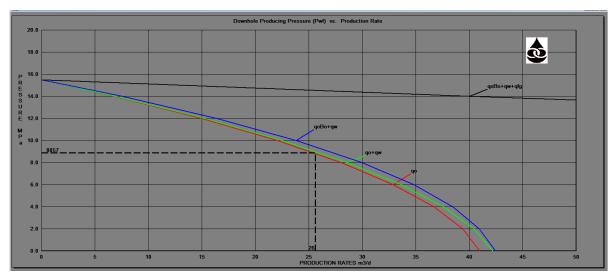



Figura A3.3 IPR Seb 7

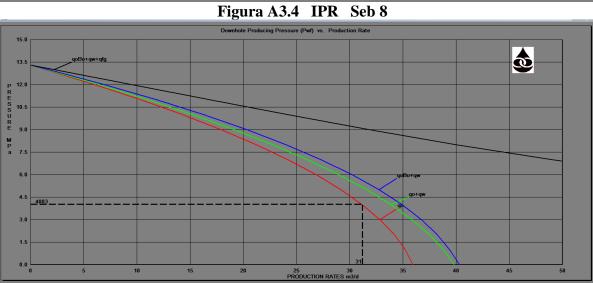


Figura A3.5 IPR Seb 9

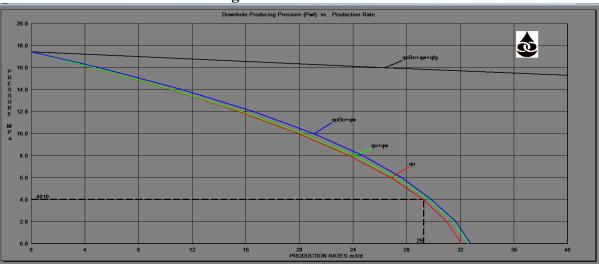
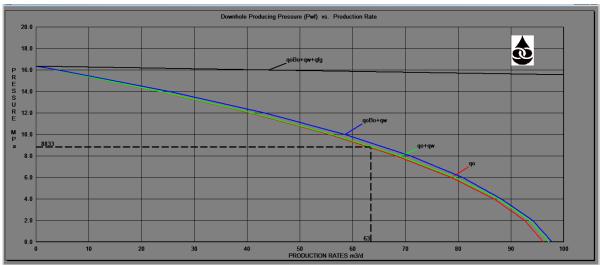



Figura A3.6 IPR Seb 10

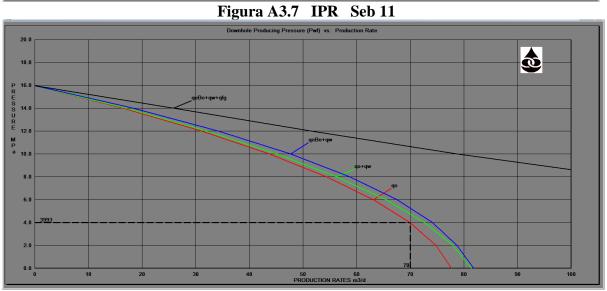


Figura A3.8 IPR Seb 12

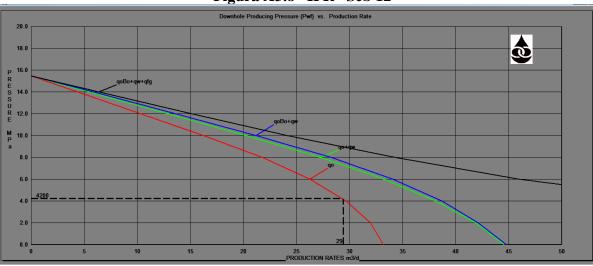
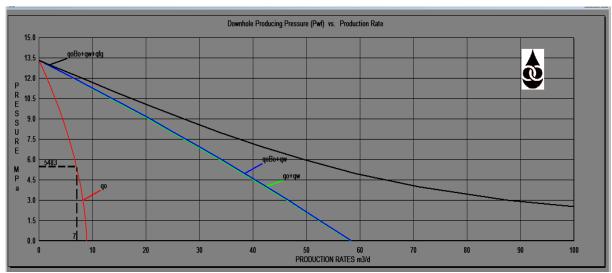



Figura A3.9 IPR Seb 13

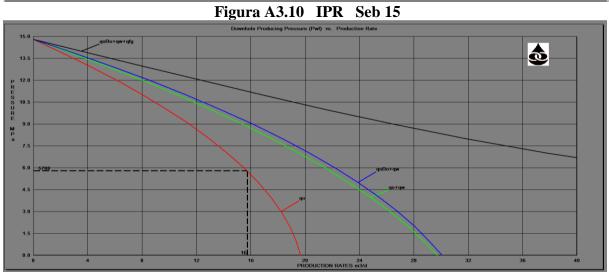


Figura A3.11 IPR Seb 16

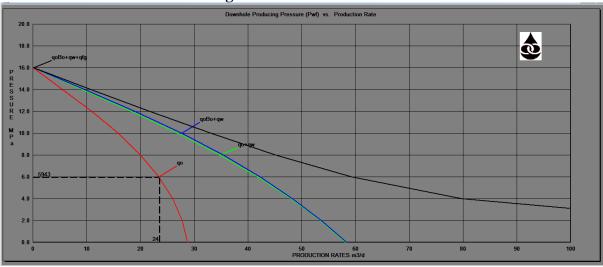


Figura A3.12 IPR Seb 19

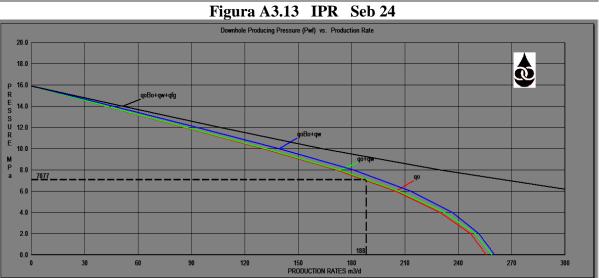


Figura A3.14 IPR Seb 25

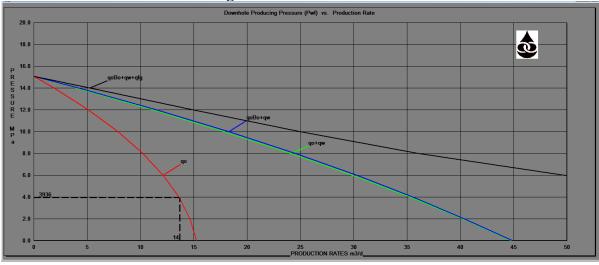


Figura A3.15 IPR Seb 101

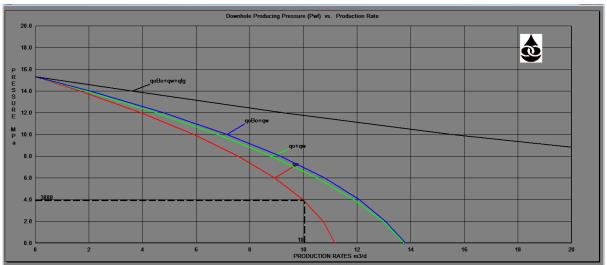


Figura A3.16 IPR Seb 102

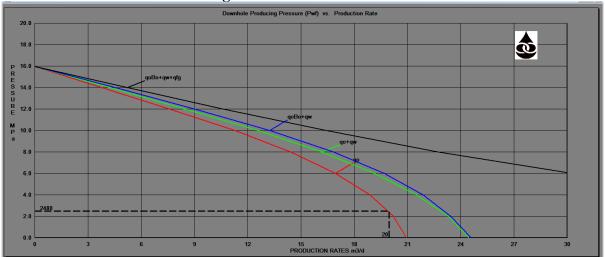


Figura A3.17 IPR Seb 103

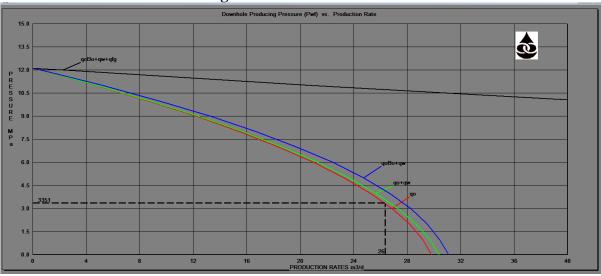


Figura A3.18 IPR Seb 104

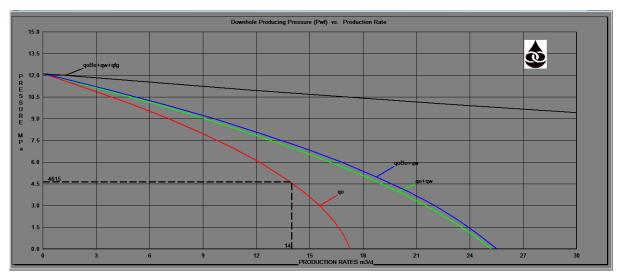


Figura A3.19 IPR Seb 105

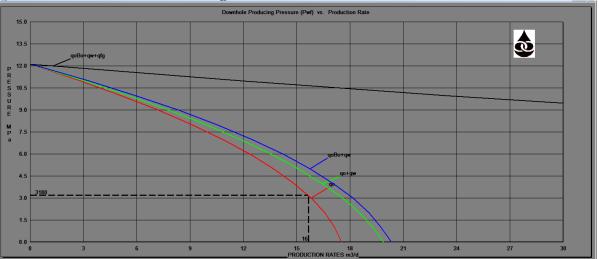


Figura A3.20 IPR Seb 106

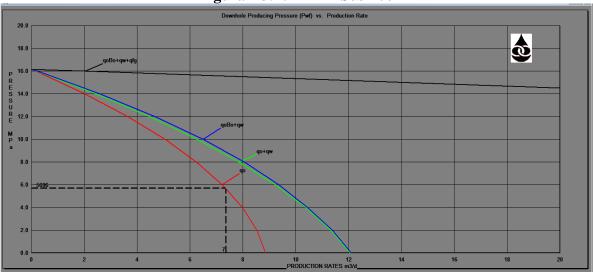


Figura A3.21 IPR Seb 150

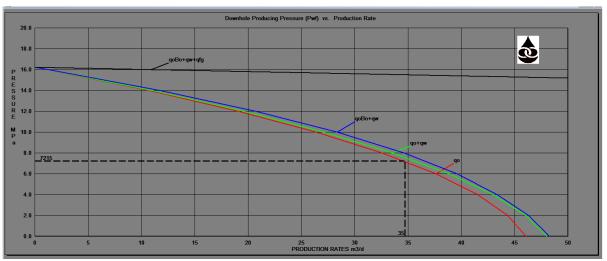
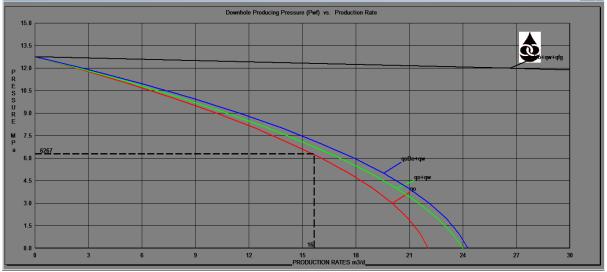



Figura A3.22 IPR Seb 170

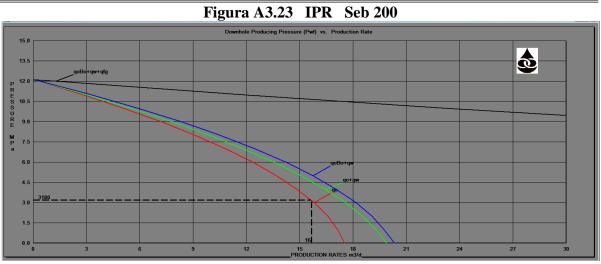


Figura A 3.24 Seb 210

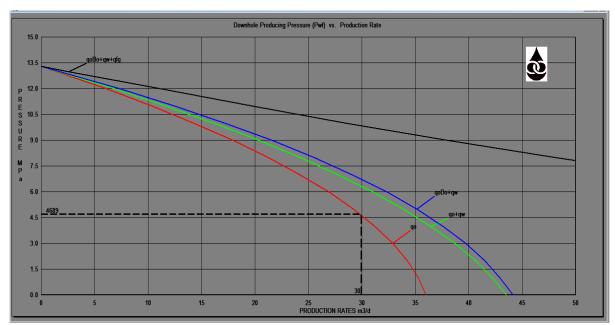


Figura A 3.25 Seb 220

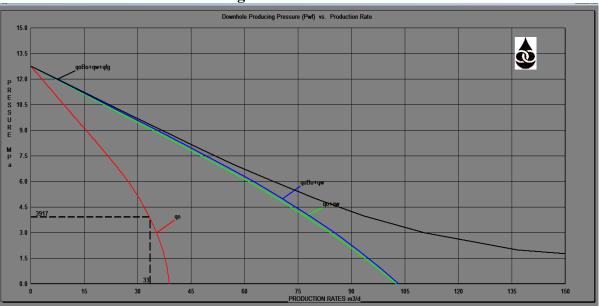


Figura A 3.26 Seb 230

ANEXO 4 Catálogo de las BCP Netzsch

Bombas PCP NETZSCH - Singlelobe

Modelo da Bomba	Modelo - Tipo Even Wall	Estator D.E. Medida Nominal [pulgadas]	Presion max. Diferencial [kgf/cm²] - [psi]	Caudal Nominal [m³/d] - [bbl/d] en 100 rpm	Velocidad Maxima [rpm]		
ST0.2			240 - 3413	0.2 - 1.3			
ST0.8		1.66"	240 - 3413	0.8 - 5	3000		
ST1.1			240 - 3413	1.1 - 7			
ST1.6			240 - 3413	1.6 - 10			
ST3.2		2 2/0"	240 - 3413	3.2 - 20	1400		
ST4.0		2 3/8"	240 - 3413	4.0 - 25	1400		
ST6.2			240 - 3413	6.2 - 39			
ST4.0		2 7/8"	240 - 3413	4.0 - 25			
ST7.0			240 - 3413	7.0 - 44			
ST10			240 - 3413	10 - 63	1000		
	ST10		150 - 2134	10 - 63			
ST14			240 - 3413	14 - 88			
ST16.4		3 1/2"	240 - 3413	16.4 - 103	650		
ST25		3 1/2	240 - 3413	25 - 157	030		
ST33			240 - 3413	33 - 208			
ST62		4"	150 - 2134	62 - 390	600		
ST78			150 - 2134	78 - 491			
	ST98	5"	150 - 2134	98 - 617	350		
ST145		5 1/2"	150 - 2134	145 - 912	330		

Figura A 4.1 Catálogo de las BCP Netzsch simple lóbulo

Bombas PCP NETZSCH - Multilobe Estator D.E. Presion max. Caudal Velocidad Modelo Modelo da - Tipo Diferencial Nominal Maxima Medida Nominal Bomba [m3/d] - [bbl/d] en 100 rpm **Even Wall** [pulgadas] [kgf/cm²] - [psi] [rpm] DT4.6 4.6 - 29 240 - 3413 1400 1.66" DT14 14 - 88 240 - 3413 700 2 3/8" DT16 16 - 101 240 - 3413 DT20 20 - 126 240 - 3413 27/8" 500 DT25 25 - 157 240 - 3413 DT32 240 - 3413 32 - 201 DT33 300 - 4267 33 - 208 DT40 3 1/2" 200 - 2845 40 - 252 400 DT40 40 - 252 150 - 2134 **DT50** 240 - 3413 50 - 314 DT66 240 - 3413 66 - 415 DT83 83 - 522 200 - 2845 350 4" 83 - 522 **DT83** 200 - 2845 DT110 150 - 2134 110 - 692 DT142 142 - 893 120 - 1707 DT74 240 - 3413 74 - 465 4 1/2" 260 DT150 150 - 2134 150 - 943 DT138 138 - 868 200 - 2845 DT170 5" 180 - 2560 170 - 1069 215 DT226 120 - 1707 226 - 1421

Figura A 4.2 Catálogo de las BCP Netzsch multi lóbulo

ANEXO 5 Catálogo de las BCP Kudu

		Capacidad y altur			ra cero		l operacional xima	Nombre Genérico del Modelo	
Series*	Model	m³/d	bfpd	m³/d	bfpd	М	Ft	altura(m)/gasto(m") @100rpm	
2 3/8"	15 TP 600 SL	15	94	3.1	19	600	1980	600/3	
	15 TP 1200 SL 15 TP 2400 SL	15 15	94 94	3.1 3.1	19 19	1200 2400	4000 8000	1200/3 2400/3	
	30 TP 650 SL	27	170	5.4	34	600	2000	650/5	
	30 TP 1300 SL	27	170	5.4	34	1300	4250	1300/5	
	30 TP 2000 SL	27	170	5.4	34	2000	6600	2000/5	
	30 TP 2600 SL	27	170	5.4	34	2600	8600	2600/5	
	45 TP 1200 ML	45	283	9	56	1200	4000	1200/9	
	45 TP 2400 ML	45	283	9	56	2400	8000	2400/9	
	80 TP 400 SL	80	503	16	100	400	1600	400/17	
	80 TP 800 SL	80	503	16	100	800	2600	800/17	
	80 TP 1200 SL	80	503	16	100	1200	4000	1200/17	
	80 TP 1600 SL	80	503	16	100	1600	5300	1600/17	
	80 TP 2000 SL	80	503	16	100	2000	6600	2000/17	
	180 TP 1300 ML	180	1132	36	226	1300	4250	1300/36	
	180 TP 2000 ML	180	1132	36	226	2000	6600	2000/36	
2 7/8"	60 TP 650 SL	66	415	13.2	83	650	2100	650/13	
	60 TP 1300 SL	66	415	13.2	83	1300	4250	1300/13	
	60 TP 2000 SL	66	415	13.2	83	2000	6600	2000/13	
	60 TP 2600 SL	66	415	13.2	83	2600	8600	2600/13	
	100 TP 600 SL	108	680	21.6	136	600	1980	600/22	
	100TP 1200 SL	108	680	21.6	136	1200	4000	1200/22	
	100 TP 1800 SL	108	680	21.6	136	1800	5900	1800/22	
	240 TP 600 SL	240	1510	48	300	600	1980	600/48	
	240 TP 900 SL	240	1510	48	300	900	2950	900/48	
3 1/2"	120 TP 1300 SL	120	755	24	151	1300	4250	1300/24	
	120 TP 2000 SL	120	755	24	151	2000	6600	2000/24	
	120 TP 2600 SL	120	755	24	151	2600	8600	2600/24	
	200 TP 600 SL	194	1220	38.8	244	600	1980	600/39	
	200 TP 1200 SL	194	1220	38.8	244	1200	4000	1200/39	
	200 TP 1800 SL	194	1220	38.8	244	1800	5900	1800/39	
	200 TP 2400 SL	194	1220	38.8	244	2400	8000	2400/39	
	300 TP 400 SL	300	1887	60	377	400	1600	400/60	
	300 TP 800 SL	300	1887	60	377	800	2600	800/60	
	300 TP 1200 SL	300	1887	60	377	1200	4000	1200/60	
	300 TP 1600 SL	300	1887	60	377	1600	5300	1600/60	

Figura A 5.1 Catálogo de las BCP KUDU

4"	180 TP 1000 SL 180 TP 2000 SL	180 180	1132 1132	36 36	226 226	1000 2000	3300 6600	1000/38 2000/38
	180 TP 3000 SL	180	1132	36	226	3000	10000	3000/38
	225 TP 1600 SL	225	1415	45	283	1600	5300	1600/46
	225 TP 2400 SL	225	1415	45	283	2400	8000	2400/46
	300 TP 600 SL	300	1887	60	377	600	1980	600/60
	300 TP 1200 SL	300	1887	60	377	1200	4000	1200/60
	300 TP 1800 SL	300	1887	60	377	1800	5900	1800/60
	300 TP 2400 SL	300	1887	60	377	2400	8000	2400/60
	400 TP 450 SL	400	2516	80	503	450	1500	450/80
	400 TP 900 SL	400	2516	80	503	900	2950	900/80
	400 TP 1350 SL	400	2516	80	503	1350	4450	1350/80
	400 TP 1800 SL	400	2516	80	503	1800	5900	1800/80
	600 TP 300 SL	600	3774	120	755	300	1000	300/120
	600 TP 600 SL	600	3774	120	755	600	1980	600/120
	600 TP 900 SL	600	3774	120	755	900	1950	900/120
	600 TP 1200 SL	600	3774	120	755	1200	4000	1200/120
	600 TP 1500 SL	600	3774	120	755	1500	5000	1500/120
	840 TP 500 ML	840	5284	168	1057	500	1650	500/168
	840 TP 1000 ML	840	5284	168	1057	1000	3300	1000/168
	840 TP 1500 ML	840	5284	168	1057	1500	5250	1500/168
5"	750 TP 800 SL	750	4718	150	944	800	2600	800/150
	750 TP 1200 SL	750	4718	150	944	1200	4000	1200/150
	1000 TP 200 SL	1000	6290	200	1258	200	660	200/200
	1000 TP 400 SL	1000	6290	200	1258	400	1320	400/200
	1000 TP 600 SL	1000	6290	200	1258	600	1980	600/200
	1000 TP 860 SL	1000	6290	200	1258	860	2800	860/200
	1000 TP 1150 SL	1000	6290	200	1258	1150	3800	1150/200
	1000 TP 1450 SL	1000	6290	200	1258	1450	5000	1450/200
	1000 TP 1700 SL	1000	6290	200	1258	1700	5600	1700/200

Figura A 5.2 Continuación Catálogo de las BCP KUDU

ANEXO 6 Catálogo de las BCP PCM,

	PC	MOINEAU™				LETION	E IAS BCP PCIVI,				
			MODELE	D . ADI							
SERIES			MODEL* Previous PCM	Rotor API	MIN	IMUM	FLL	W KATE	RECOMMENDED MOTOR POWER S.R		
JENIES		ISO	Designation	thread	CASING	TUBING	bpd	m³/d	kW	HP	SIZE
		3E1200	15 TP 1200	3/4-			76	12	5.5 KW	7.5 HP	3/4-
		3E2600	15 TP 2400	3/4"	il		76	12	7.5 kW	10 HP	3/4"
		6E600	30 TP 600	3/4"			129	21	5.5 KW	7.5 HP	3/4"
2.3/8"EU	5	6E1300	30 TP 1300	3/4"	ALL	2.3/8-	129	21	7.5 kW	10 HP	3/4"
2.0,0 20	11	6E2000	30 TP 2000	3/4"			129	21	15 KW	20 HP	3/4"
		16E1200	80 TP 1200	3/4"	il		606	65	15 KW	20 HP	3/4"
		16E1600	80 TP 1600	3/4"			406	65	18,5 KW	25 HP	3/6"
		13E1300	60 TP 1300	7/8"			308	49	15 KW	20 HP	3/6"
		13E2000	60 TP 2000	17			308	49	22 KW	30 HP	7/8"
2.7/0" 511	I.I	13E2600	60 TP 2600	T.	ll		308	49	30 KW	40 HP	7/81
2.7/8" EU		22E12D0	100 TP 1200	7/81	ALL	2.3/8	517	82	18.5 kW	25 HP	3/4"
		22E1800	100 TP 1800	T.			517	82	30 KW	40 HP	7/81
		48E900	240 TP 900	17			1 140	182	30 KW	40 HP	7/81
		24E2000	120 TP 2000	1"			581	93	30 KW	40 HP	7/81
		24E2600	120 TP 2600	1"			581	93	30 KW	40 HP	7/81
		32E1500	160 TP 1500	1"	5.1/2"		760 760 935	121	30 KW	40 HP	7/8"
		32E2200	160 TP 2200	1"				121	30 KW	40 HP	7/8"
3.1/2"EU	>	40E400	200 TP 600	1"		2.7/8-		149	15 KW	20 HP	3/4"
		40E1200	200 TP 1200	1"			935	149	30 KW	40 HP	7/8"
		40E1800	200 TP 1800	1"			935	149	37 KW	50 HP	7/8"
		63EB00	300 TP 800	1"			1 433	228	30 KW	40 HP	7/81
		63E1200	300 TP 1210	T.			1 433	228	37 KW	50 HP	17
		45E1600	225 TP 1600	1 1/8"			1 075	171	37 KW	50 HP	1"
		45E2400	225 TP 2400	1 1/8"			1 075	171	55 KW	75 HP	1"
		60E1200	300 TP 1200	1 1/8"			1 444	230	37 KW	50 HP	7/81
		60E1800	300 TP 1800	1 1/8"			1 444	230	45 KW	60 HP	T*
	6	60E2400	300 TP 2400	1 1/8"			1 444	230	75 KW	100 HP	1.1/8*
4″NU	>	80E900	400 TP 900	1 1/8"	5.1/2-	3.1/2-	1 927	306	37 KW	50 HP	7/8"
4 110		80E1350	400 TP 1350	1 1/8"		U.172	1 927	306	55 KW	75 HP	T.
		80E1800	400 TP 1800	1 1/8"			1 927	306	75 KW	100 HP	1.1/8*
		120E600	600 TP 600	1 1/8"			2 865	456	37 KW	50 HP	111
		120E900	600 TP 900	1 1/8"			2 865	456	55 KW	75 HP	T*
		120E1200	600 TP 1200	1 1/8"			2 865	456	75 KW	100 HP	1.1/8*
		160E600	800 TP 600	1 1/8"			3819	608	45 KW	60 HP	1"
		86E2000	430 TP 2000	1 1/8"			2 063	328	75 KW	100 HP	1.1/8"
5"CSG	>	116E1600	580 TP 1600	1 1/8"	6.5/8"	4-	2 755	661	75 KW	100 HP	1.1/8*
		150E1200	750 TP 1200	1 1/8"	-,-		3 599	570	75 KW	100 HP	1.1/8*
		200E860	1000 TP 860	1 1/8"			5016	798	75 KW	100 HP	1.1/8*
6.5/8"BUT	-	185E1500	900 TP 1500	1 1/8" mod	8.5/8"	4.1/2	4.408	699	90 KW	120 HP	1.1/2"

ANEXO 7 Determinación del valor actual neto

Año	As	Ate	Aci	Anci	Atc	Acf	Fd	Adcf	Ait	VAN
0	0	0			1001000	-1001000	1	-1001000	0	-1001000
1	96053127	57341909	38711219	19355609	329000	19026609	0,89285714	16988044	19355609	15987043,94
2	96053127	57341909	38711219	19355609	329000	19026609	0,79719388	15167896	19355609	31154940,41
3	96053127	57341909	38711219	19355609	329000	19026609	0,71178025	13542765	19355609	44697705,11
4	96053127	57341909	38711219	19355609	329000	19026609	0,63551808	12091754	19355609	56789459,31
5	96053127	57341909	38711219	19355609	329000	19026609	0,56742686	10796209	19355609	67585668,46
6	96053127	57341909	38711219	19355609	329000	19026609	0,50663112	9639472,4	19355609	77225140,83
7	96053127	57341909	38711219	19355609	329000	19026609	0,45234922	8606671,9	19355609	85831812,69
8	96053127	57341909	38711219	19355609	329000	19026609	0,40388323	7684528,4	19355609	93516341,1
9	96053127	57341909	38711219	19355609	329000	19026609	0,36061002	6861186	19355609	100377527,1
10	96053127	57341909	38711219	19355609	329000	19026609	0,32197324	6126059	19355609	106503586,1