UNIVERSIDAD DE MATANZAS

"CAMILO CIENFUEGOS"

FACULTAD DE INGENIERIAS

DEPARTAMENTO INGENIERÍA QUÍMICA

TRABAJO DE DIPLOMA

Título: Determinación de áreas de peligro potencial que pueden originarse, por incendios y/o explosiones, en la Empresa Comercializadora de Combustibles de Matanzas.

Autor: Yalaina Lima Pedrero.

Tutor: Ing. Santiago Díaz Suárez. MsC.

Resumen

En este trabajo se realiza un estudio en la Empresa Comercializadora de Combustibles Matanzas (ECCM), ubicada en la zona industrial, de dicha provincia. En el mismo se determinan las áreas peligrosas, que pueden originarse ante la ocurrencia de un accidente ya sea por incendio o explosión en los tanques de almacenamiento de combustibles, mediante el empleo del software ALOHA (Areal Locations of Hazardous Atmospheres). Los resultados de este trabajo serán de utilidad para la empresa y los órganos de la defensa civil en la conformación de un plan futuro de medidas de prevención y protección frente a eventos de esta índole.

Summary

This work was carried out in the enterprise of the fuel business in the Base of supply of crude petroleum, located in the industrial area, of the province of Matanzas. It consists of identifying dangerous zones that can come up before the occurrence of a fire accident and the explosion of combustibles in the tanks, by use of the ALOHA software (Areal Locations of Hazardous Atmospheres). The results of this study will be useful for business and civil defense officials in developing a plan for future prevention and protections against such events.

Declaración de Autoridad

Declaro que soy la única autora de este Trabajo de Diploma, en calidad de lo cual autorizamos a la Universidad de Matanzas "Camilo Cienfuegos" y la *Empresa Comercializadora de Combustibles de Matanzas* de hacer uso del mismo con la finalidad que estimen pertinente.

Yalaina Lima Pedrero.

OTA DE ACEPTACIÓN	
	PRESIDENTE DEL TRIBUNAL
	MIEMBRO DE TRIBUNAL
	MIEMBRO DE TRIBUNAL
lo en Matanzas, el día del	mes de del año 2012
"Año 54 de la	Revolución".

PENSAMIENTO

"...La misión del hombre en la vida, no está en llegar a ser rico, si no en descubrir algo importante, algo novedoso para la humanidad..."

José Martí

AGRADECIMIENTOS

Yalaina

A mi mamá por todo su apoyo y su incondicional entrega, gracias por estar a mi lado durante todos estos años.

A toda mi familia por sus consejos, regaños y sobre todo por el cariño que me han brindado toda mi vida.

A mis vecinos por poder contar con ustedes siempre.

A mis amigas y amigos por su compañía y los días inolvidables que pasé junto a ustedes, nunca los olvidaré.

A mi tutor y Profesores. Por ser mis guías y ayudarme a vencer este gran escalón tan importante y decisivo en mi vida.

A todas las personas que de una forma u otra hicieron posible la realización de este trabajo.

Gracias.

DEDICATORIA

A mi mamá por dedicarme su vida, por ser incondicional en todo momento, por ayudarme a crecer. Por todo lo que no puedo expresar con palabras, por todo eso y más te dedico a ti mi vida. TE QUIERO.

A mi familia que sin su ayuda no hubiera sido posible alcanzar mis sueños.

No sería posible en reducido espacio darles gracias a mis profesores y dedicarle estas palabras en especial a mi tutor y a todos los que de una forma u otra han contribuido en todos estos años.

Yalaina

<u>Índice</u>

	Introducción.	
		Pág.
	Capítulo I. Análisis Bibliográfico.	2
1.1	Conceptos y generalidades.	2
4.0	Definition de Assistante Français Descritor	
1.2	Definición de Accidente, Emergencia, Desastre.	2
1.3	Riesgos químicos. Gestión de la prevención de riesgo	6
	químico.	
1.3.1	Evaluación de riesgo de incendios	10
1.3.2	Evaluación de riesgo de explosiones	17
1.4	Técnicas de estimación y evaluación de riesgos.	19
4 =	Evaluación de riesgos químicos.	
1.5	Clasificación toxicológica de las sustancias por sus	22
	efectos sobre el organismo.	
1.6	Riesgos asociados al trasiego y preparación del petróleo	25
4 7	crudo.	07
1.7	Resultados de la caracterización del clima de la zona	27
	objeto de estudio.	
1.7.1	Nubosidad	28
1.7.2	Temperatura del aire	29
1.7.3	Humedad del aire	30
1.7.4	Viento	31
	Canítula II Matarialas y mátados	32
	Capítulo II. Materiales y métodos.	32
2.1	Caracterización del proceso.	32
2.2	Caracterización del software ALOHA.	34
2.3	Establecimiento de las condiciones de trabajo con el	42
	software.	
	Capítulo III. Resultados y Discusión.	44
	Estimación de las áreas peligrosas del escenario nube	44
	inflamable.	7-7
3.1	iiiiaiiiasie.	
	Dependencia del tamaño de las áreas de peligro con	
3.2	respecto a las condiciones climatológicas	52
	Estimación de las áreas peligrosas que surgen cuando se	

3.3	produce la explosión de una nube en presencia de una fuente de ignición común.	56
	Estimación de las áreas peligrosas que surgen cuando se	
3.4	produce la explosión de una nube en presencia de una	58
	fuente de ignición de un detonante de gran potencia.	
	Conclusiones	
	Recomendaciones	
	Bibliografía	
	Anexos	

Introducción

El desarrollo de instalaciones de diversos tipos para la extracción de petróleo, su procesamiento, almacenamiento y transportación con el objetivo de disponer los combustibles que serán empleados en las industrias, la generación de energía eléctrica y en los distintos medios de transporte, ha implicado la aparición de nuevos riesgos, que pueden originar accidentes graves con un fuerte impacto sobre la población y el entorno. El desarrollo científico-técnico en la industria vinculada con los hidrocarburos conlleva también a una mayor probabilidad del aumento del riesgo de ocurrencia de desastres que tienen su origen en el incumplimiento de las normas tecnológicas en la manipulación, transportación y almacenaje de los mismos, este tipo de desastre está directamente relacionado con la actuación del hombre en la realización de distintos procesos tecnológico que tienen asociado un alto grado de peligro.

En el mundo se ha producido múltiples desastres asociados a la extracción, preparación y manejos de hidrocarburos, razón por la cual resulta importante realizar estudios de riesgos y predicción de los efectos de posibles accidentes de derrame, incendio y explosión de estos productos, que además de ser tóxicos son también inflamables y explosivos.

La Empresa Comercializadora de Combustibles de Matanzas, por sus características no está ajena a los riesgos industriales ya que la misma tiene como objetivo recepcionar, comercializar, almacenar y acondicionar combustibles, de ahí que sea de vital importancia el estudio de riesgos y posibles accidentes, que provocarían diferentes tipos de afectaciones al medio ambiente. Esta instalación ha sido objeto de un estudio científicamente serio, que se lleva a cabo desde hace dos años por especialistas y estudiantes de carrera de Ingeniería Química de la Universidad de Matanzas de Camilo Cienfuegos, el cual ha estado encaminado a obtener informaciones valiosas que permitan elaborar un plan de prevención de accidentes en aquellas direcciones que más lo necesitan. Este trabajo pretende continuar obteniendo resultados que faciliten la elaboración de este plan de prevención, peri con un nivel de comportamiento mayor para que esta empresa pueda perfilar sus planes de medida.

Los estudios hechos hasta la fecha, aún resultan insuficientes para establecer en qué situación real se pudiera encontrar la comercializadora y su entorno ante diferentes riesgos y accidentes de incendios y explosión, ya que se desconocen las áreas peligrosas que pueden originarse ante la ocurrencia de estos tipos de accidentes bajo diferentes condiciones climatológicas.

Problema: ¿Cómo determinar las áreas de peligro potencial para la población y el entorno ambiental, que pueden originarse por incendios y/o explosiones ante posibles accidentes en los tanques de almacenamiento de combustibles ubicados en la Empresa Comercializadora de Combustibles Matanzas?

Hipótesis: Si se aplica un estudio de atmósferas peligrosas, mediante el empleo de un software profesional se puede definir las zonas de peligro por incendio y/o explosión para el hombre y el medio ambiente en general.

Para dar cumplimiento a esta hipótesis se ha trazado como objetivo general:

Objetivo General: Efectuar una estimación de las áreas peligrosas que se pueden originar ante posibles incendios o explosiones, mediante un software profesional, en La Empresa Comercializadora de Combustibles.

Objetivos específicos:

- 1. Revisar y analizar la bibliografía relacionada con el tema investigado.
- 2. Caracterizar las sustancias tóxicas que intervienen en el proceso.
- 3. Determinar las zonas de atmósferas peligrosas (escenarios de incendios y explosiones) mediante el Software ALOHA.
- 4. Analizar los resultados obtenidos y emitir conclusiones de interés.

Capítulo 1: Análisis Bibliográfico.

Este capítulo contribuye a definir el estado científico en que se encuentra la temática. Para ello se consultaron infinidad de documentos en el Centro de Información de la Universidad de Matanzas, revistas y artículos científicos facilitados por el tutor, otras fuentes e innumerables sitios de Internet.

1.1 Conceptos y generalidades.

Un riesgo es la probabilidad de que un peligro (causa inminente de pérdida), existente en una actividad determinada durante un período definido, ocasione un incidente con consecuencias factibles de ser estimadas. Es el potencial de pérdidas que existe asociado a una producción productiva, cuando cambian en forma no planeada las condiciones definidas como estándares para garantizar el funcionamiento de un proceso o del sistema definido en su conjunto. (**Muñoz**, 1997).

Para propósitos de Ingeniería el riesgo se describe como las pérdidas esperadas (pérdidas humanas, personas lesionadas, daño a la propiedad e interrupción de las actividades económicas), causadas por un fenómeno en particular. Riesgo es la función de la probabilidad de sucesos particulares y las pérdidas que se producen de ocurrir materializarse el accidente en función de la causa que lo origine. (Correa, 2004), (Morales, 2004).

El riesgo es la probabilidad de ocurrencia de daño por determinado peligro, en dependencia del mismo y de la exposición. En otras palabras es la posibilidad de que se produzca un evento dañino (muerte, lesión o pérdida) por exposición a un agente químico o físico en condiciones específicas. Según **PNUMA/IPCS (1999)**.

1.2 Definición de Accidente, Emergencia, Desastre.

Se conoce como accidente de trabajo, toda aquella lesión corporal que el trabajador sufra con ocasión o por consecuencia del trabajo que ejecuta por

cuenta ajena. Es decir que si no hay lesiones no existe accidente. Según **Linares**, (2001).

Accidente químico: Se produce como resultado de una avería, creando una contaminación química del medio ambiente circundante, que produce la afectación de los trabajadores y la población del área e incluso la muerte de algunos de los afectados, siempre que no exceda una cantidad a partir de la cual se considera un desastre (PNUMA/IPCS, 1999).

Casal, et al (2001) reflejan que un accidente es un suceso fortuito e incontrolado, capaz de producir daños. En general en la industria química este suceso coincide con situaciones de emisión, escape, vertido, incendio y explosión, donde están implicadas las sustancias peligrosas.

Los autores Casal et al. (2001) clasificaron los accidentes en tres categorías:

- Categoría 1: Aquellos accidentes que se prevé que habrá, como única consecuencia, daños materiales en la instalación industrial accidentada. Los daños asociados a la emisión, el escape, el vertido y la explosión quedan, pues, limitados a los límites de la propiedad de la instalación industrial; no existen víctimas ni heridos.
- Categoría 2: Aquellos accidentes en los que se prevé que habrá, como consecuencia, posibles víctimas y daños materiales en la instalación industrial. Las recuperaciones en el exterior se limitan a daños leves o efectos adversos sobre el medio ambiente, en zonas limitadas.
- Categoría 3: Aquellos accidentes en los que se prevé que habrá, como consecuencia posibles víctimas, daños materiales o alteraciones graves del medio ambiente en zonas extensas, en el exterior de la instalación industrial.

Emergencia se asocia a los accidentes vinculados a las entidades que pueden conllevar al escape de sustancias tóxicas, explosiones o incendios de grandes proporciones. Situación anormal generada con posibilidades de daños graves, a

las personas, instalaciones y medio ambiente, que provoca la necesidad de medidas especiales dentro y fuera del lugar donde se origina (Rodríguez, 2004).

Las siguientes situaciones de emergencia se establecen en función de las necesidades de intervención derivadas de las características del accidente y de sus consecuencias ya producidas o previsibles, así como también los medios de intervención disponibles.

- Situación 0: Referida a aquellos accidentes que pueden ser controlados por los medios disponibles y que, aún en su evolución más desfavorable, no supone peligro para personas no relacionadas con las labores de intervención , ni para el medio ambiente, ni para bienes distintos a la propia red viaria en la que se ha producido el accidente.
- Situación 1: Referida a aquellos accidentes que pudiendo ser controlados con los medios de intervención disponibles, requieren de la puesta en práctica de medidas para la protección de las personas, bienes o el medio ambiente, que estén o que puedan verse amenazados por los efectos del accidente.
- Situación 2: Referida a los accidentes que para su control o la puesta en práctica de las necesarias medidas de protección de las personas, los bienes o el medio ambiente se prevé el concurso de medios de intervención, no asignados al Plan de la Comunidad Autónoma, a proporcionar por la organización del Plan Estatal.
- Situación 3: Referida a aquellos accidentes en el transporte de mercancías peligrosas al considerarse que está implicado el interés nacional así sean declarados por el Ministro de Justicia e Interior. (Casal et al, 2001).
- En las definiciones de desastres que actualmente gozan de mayor aceptación se encuentra un nítido punto de consenso: "Es el resultado de una ruptura ecológica importante de la relación entre los humanos y su medio ambiente, como consecuencia de un evento (súbito o lento) de tal magnitud que la comunidad impactada en términos de pérdidas

de vidas y salud de la población, la destrucción o perdidas de bienes y daños severos sobre el medio ambiente necesita esfuerzos extraordinarios para hacerle frente, a menudo con ayuda externa o apoyo internacional". De este modo los desastres se diferencian de otras emergencias, en tanto generan demandas de recuperación y reorganización cuya intensidad desborda las capacidades de las poblaciones afectadas.

 Los desastres generalmente se subdividen por razones didácticas en dos amplias categorías: aquellos causados por fuerzas naturales (desastres naturales) y los causados o generados por los humanos (antropológicos o tecnológicos) (Casal et al, 2001).

Desastres tecnológicos: Son situaciones en las cuales un gran número de personas, propiedades, infraestructura, actividades económicas son directa y adversamente afectadas por accidentes industriales de gran magnitud, incidentes de contaminación densa, accidentes químicos, biológicos, nucleares, aéreos, incendios masivos y explosiones.

Desastres de comienzo lento: En situaciones en las cuales la habilidad de las personas para adquirir alimentos y otras necesidades de existencia disminuyen lentamente y hasta el punto en que los sobrevivientes quedan en grave peligro. Tales situaciones son típicamente producidas o precipitadas por sequías, fracaso de cultivo, enfermedades causadas por un vector u otras formas de desastres ecológicos o negligencias.

Desastres causados por el hombre: Situaciones de emergencia cuyas principales causas directas se cuantificaron como acciones humanas, sean o no deliberadas.

Desastre químico: Suceso de grandes magnitudes, asociado a la muerte o afección de un número considerable de personas, animales o extensas áreas de vegetación, además de cuantiosos daños materiales.

Desastres naturales súbitos: calamidades súbitas causadas por fenómenos naturales tales como: inundaciones, tormentas tropicales, terremotos, erupciones volcánicas, etc. Se desencadenan con poco o sin aviso y tienen un aspecto

adverso inmediato sobre la población humana, actividades y sistemas económicos. (Casal et al, 2001).

1.3 Riesgos químicos. Gestión de la prevención de riesgo químico.

. (Badia, 2004). Todas aquellas sustancias químicas inorgánicas u orgánicas de diferentes características y fórmulas que, presentándose de forma líquida, sólida, gaseosa, en aerosoles, nieblas, vapores, etc., pueden penetrar el organismo y provocar efectos tóxicos, irritantes y sensibilizadores, cancerígenos, mutágenos e influir sobre la función reproductora; son las que provocan los riesgos químicos.

Estos riesgos pueden ser producto de la exposición a diferentes tipos de compuestos plantea **Ceballos**, **(2003)**:

- Polvos: Están compuestos por partículas sólidas con un tamaño suficientemente pequeño como para que sea posible su traslación a través del aire, siendo así uno de los contaminantes más peligrosos ya que deterioran considerablemente la salud de los obreros al actuar directamente sobre el sistema respiratorio, causando enfermedades respiratorias.
- Líquidos: La exposición o el contacto con diversos materiales en estado líquido puede producir, efecto dañino sobre los individuos, algunos líquidos penetran a través de la piel ocasionando por esta vía diversas enfermedades.
- Vapores: Sustancias gaseosas que normalmente se encuentran en estado líquido o sólido y que pueden ser tornadas a su estado original mediante un aumento de presión o disminución de la temperatura. Penetran por el sistema respiratorio, y una vez en este pueden mezclarse y ser absorbidos por los fluidos y permanecer en las mucosas o atravesar estas.

El proceso de evaluación del riesgo para la salud humana asociado a la exposición de un producto químico tiene tres componentes:

- 1) Identificación del peligro potencial: Confirmación de que un agente químico es capaz, en circunstancias apropiadas, de causar un efecto adverso.
- 2) Evaluación de la dosis respuesta: Establecer la situación cuantitativa entre la dosis y el efecto.
- 3) Evaluación de la exposición: Identificar y definir las exposiciones que ocurran o puedan ocurrir.

Como conclusión del proceso de evaluación se debe hacer una caracterización del riesgo que es la síntesis de la información cualitativa que describe el riesgo estimado para la salud, deducido de la exposición ambiental.

De acuerdo con **Casal et al (2001)** merece la pena destacar los criterios de clasificación según los efectos específicos sobre la salud humana.

Estos efectos se refieren a:

- Sustancias carcinogénicas.
- Sustancias mutagénicas.
- Sustancias tóxicas para la reproducción.
- Sustancias corrosivas.
- Sustancias sensibilizadoras.
- Sustancias irritantes.
- Sustancias de toxicidad aguda.
- Sustancias de toxicidad por dosis repetidas.

El riesgo químico es un intento científico de identificar y estimar los riesgos reales y se deriva la consideración de los componentes mencionados inicialmente: el peligro, la relación de dosis—respuesta (efecto) y la caracterización del riesgo. No es más que la identificación y cuantificación del riesgo resultante del uso o presencia de las personas o las sociedades que usan dicho agente en la cantidad y la manera recomendada como las vías posibles de exposición. La cuantificación requiere (idealmente) el establecimiento de las relaciones dosis-efecto y dosis-

respuesta en los individuos y poblaciones objetivo concuerda PNUMA/IPCS, (1999).

Sustancias tóxicas: Llámese a venenos, irritantes y asfixiantes. No interactúan directamente con los tejidos pero interfieren en los procesos metabólicos. Es conveniente evitar inhalaciones y el contacto con la piel y mucosas, trabajar bajo campana y utilizar dispensadores automáticos.

Corrosivos: Referidos a productos químicos entre 2 < PH > 12.5. Los ácidos y bases están dentro de esta categoría. Inducen destrucción visible del tejido, también producen lesiones por inhalación o contacto con la piel. Es conveniente añadir siempre el ácido (álcali) sobre el agua (nunca en forma inversa) en pequeñas cantidades por vez y refrigerándola. Se debe evitar la inhalación de vapores.

Los productos químicos mutágenos y teratogénicos ocasionan aberraciones cromosómicas o malformaciones congénitas dado que presentan el potencial para provocar riesgo irreversible o la muerte de las generaciones futuras. Es necesario advertir el uso y conocimiento de las embarazadas en la manipulación de productos químicos con los cuales se trabaja.

Los riesgos que se derivan de la exposición y la incidencia creciente a nivel mundial de enfermedades asociadas a las sustancias tóxicas reclama los gobiernos de cada país una mayor atención y la adopción de políticas claras y definidas que permitan armonizar el papel de los diversos sectores en la prevención y el manejo integral de estos problemas. Resulta muy conveniente también, que unido a los diferentes tipos de investigaciones toxicológicas, se realicen estudios epidemiológicos encaminados a conformar y avalar los datos experimentales y al mismo tiempo estudiar la acción de las sustancias tóxicas en el medio ambiente y las consecuencias que provocan sobre el hombre, las plantas y los animales (**Duffus, 1996**).

Carcinógenos: Referido a las sustancias químicas que se ha demostrado provocan cáncer en animales o seres humanos, estos productos reconocidos como carcinógenos, o bajo sospecha de provocar cáncer deben estar claramente etiquetados y manejarse en un área específica del laboratorio con equipo protector

adecuado y cumpliendo las normas establecidas en su manipulación. Muchos productos químicos son clasificados como posibles sustancias que provocan cáncer. La National Toxicology Program (NTP) y la International Agency for Researchon Cancer (IARC) ofrecen una lista de dichos productos. (PNUMA/IPCS, 1999).

Cuando se trate de agentes cancerígenos, el empresario tendrá disponible para las autoridades laborales y sanitarias la documentación sobre las evaluaciones, sustancias, número de expuestos, medidas preventivas, equipos de prevención, criterios y resultados de sustitución y además una lista actualizada de los trabajadores con actividades de riesgo. Los episodios tóxicos constituyen en nuestra sociedad de hoy una preocupación global, dado por la utilización abusiva y no reglamentada en nuestros países de las sustancias químico-tóxicas, de los productos confeccionados con las mismas y de los desechos peligrosos que resultan de su empleo, lo cual impacta brutalmente y genera grandes problemas que afectan la salud del hombre y el medio ambiente y atentan muy seriamente contra la naturaleza y la existencia propia de la especie humana.

Tratar de describir los riesgos por agentes químicos y las acciones preventivas frente a ellos, es una tarea un tanto complicada por diversas razones. Los productos químicos que se comercializan son muy numerosos y con una serie de variables propiedades. Según el Inventario Europeo de Sustancias Comercializadas Existentes (EINECS según sus siglas en inglés), éstas son más de cien mil. Por otra parte, dada la generalización de la utilización de productos químicos y de procesos que generan contaminantes químicos, nos encontramos que prácticamente en cualquier actividad existen riesgos por agentes químicos, desde las tareas domésticas a la misma industria química.

Además, los riesgos pueden ser de muchos tipos. Pueden generar desde incendios, explosiones e intoxicaciones agudas (accidentes) hasta daños irreversibles para la salud a medio o largo plazo, como la silicosis o diversos tipos de cáncer (enfermedad profesional). Los mecanismos de desencadenamiento de los riesgos son también muy variados, según se trate de la provocación de incendios o explosiones, contactos con la piel, generación de gases y vapores,

polvos en el ambiente, ingestión por vía oral, etc. Las causas son también muy variada y nos podemos encontrar con diversos enfoques: médico-farmacéutico, alimentario, medioambiental, industrial/laboral, agrícola-fitosanitario, consumidordoméstico, protección de bienes, etc. En la aparición de riesgos y en su mayor o menor grado de gravedad pueden influir distintos factores, como el estado de agregación (líquido, polvo, aerosol, vapor, etc.), la concentración unida a la temperatura y la presión, la dosis de incorporación al organismo, las vías de entrada a éste, etc. (Ríos, 2009).

1.3.1. Evaluación de riesgo de incendios.

En terminología de incendios, el reductor se denomina combustible y el oxidante carburante. Un incendio es una reacción química de oxidación - reducción fuertemente exotérmica. Para que un incendio se inicie es necesario que el combustible y el carburante se encuentren en espacio y tiempo en un estado energético suficiente para que se produzca la reacción entre ambos. La energía necesaria para que tenga lugar dicha reacción se denomina energía de activación; esta energía de activación es la aportada por los focos de ignición. La reacción de combustión es una reacción exotérmica. De la energía desprendida, parte es disipada en el ambiente produciendo los efectos térmicos del incendio y la otra parte calienta a más reactivos; cuando esta energía es igual o superior a la necesaria, el proceso continúa mientras existan reactivos. Se dice entonces que hay reacción en cadena. Por lo tanto, para que un incendio se inicie tienen que coexistir tres factores: combustible, comburente y foco de ignición que conforman el conocido "triángulo del fuego"; y para que el incendio progrese, la energía desprendida en el proceso tiene que ser suficiente para que se produzca la reacción en cadena. Estos cuatro factores forman lo que se denomina el "tetraedro del fuego". (Duarte, 2009).

Concuerda PNUMA/IPCS, (1999) que las sustancias inflamables son:

1. Gases inflamables: Sustancias que en estado gaseoso a una presión normal y mezclada con aire se hacen inflamables y cuya temperatura de ebullición a una presión normal es de 20°C inferior.

- 2. Líquido altamente inflamable: sustancias que tiene una temperatura de inflamabilidad inferior a los 21°C y cuya temperatura de ebullición a una presión normal es superior de 20°C.
- 3. Líquidos inflamables: Sustancias que tienen una temperatura de inflamabilidad inferior a los 55°C y que conservan el estado líquido bajo presión, en las que unas condiciones particulares de elaboración, como una presión elevada y una temperatura elevada puede crear riesgo de accidentes graves. (PNUMA/IPCS, 1999).

Para (**Duarte, 2009**) **el riesgo de incendio**, al igual que cualquier otro riesgo de accidente viene determinado por dos conceptos clave: los daños que puede ocasionar y la probabilidad de materializarse. Por lo tanto, el nivel de riesgo de incendio (NRI) se debe evaluar considerando la probabilidad de inicio del incendio y las consecuencias que se derivan del mismo:

NRI = Probabilidad de inicio de incendio x Consecuencias

También se define **Probabilidad de inicio del incendio**: Viene determinada por las medidas de prevención no adoptadas; es decir, de la coexistencia en espacio, tiempo e intensidad suficiente del combustible y el foco de ignición. (**Duarte**, **2009**).

Combustible: Su peligrosidad depende fundamentalmente de su estado físico (sólido, líquido o gas) y en cada uno de estos estados, de otros aspectos ligados a sus propiedades físico - químicas, su grado de división o fragmentación, etc. En el caso de combustibles sólidos su grado de fragmentación es fundamental ya que a mayor división se precisa de menor energía (en intensidad y duración) para iniciar la combustión. Para líquidos y gases inflamables son la concentración combustible - aire precisa para la ignición (límite inferior de inflamabilidad) y la energía de activación necesaria (energía mínima de ignición) para que se produzca la reacción de combustión; siendo, además, asimismo un parámetro fundamental para los líquidos, la temperatura mínima a la que el combustible emite vapores

suficientes para que se forme la mezcla inflamable (temperatura de inflamación o "flash point").Para el control del combustible, algunos aspectos que se deben de tener en cuenta son los siguientes:

- Sustitución del combustible por otra sustancia que no lo sea o lo sea en menor grado.
- Dilución o mezcla del combustible con otra sustancia que aumente su temperatura de inflamación.
- Condiciones de almacenamiento: Utilizar recipientes cerrados; almacenar estrictamente la cantidad necesaria de combustible; mantenimiento periódico de las instalaciones de almacenamiento para evitar fugas y goteos.
- Ventilación general y/o aspiración localizada en locales y operaciones donde se puedan formar mezclas inflamables.
- · Control y eliminación de residuos.
- Orden y limpieza.
- Señalización adecuada en los recipientes o conductos que contengan sustancias inflamables.(Duarte, 2009).

Según (**Duarte**, **2009**).Los focos de ignición: aportan la energía de activación necesaria para que se produzca la reacción. Estos focos de ignición son de distinta naturaleza. Para los focos térmicos los factores a tener en cuenta son los siguientes:

- Fumar o el uso de útiles de ignición.
- Instalaciones que generen calor: estufas, hornos, etc.
- Rayos solares.
- Condiciones térmicas ambientales.
- Operaciones de soldadura.
- Vehículos o máquinas a motor de combustión.

En el caso de los focos eléctricos debe tenerse en cuenta:

- Chispas debidas a interruptores, motores, etc.
- Cortocircuitos.
- Sobrecargas.
- Electricidad estática.
- Descargas eléctricas atmosféricas.

Para los focos mecánicos deben considerarse:

- Herramientas que puedan producir chispas.
- Roces mecánicos.
- Chispas zapato suelo.

Finalmente, para los focos químicos han de contemplarse:

- Sustancias reactivas/incompatibles.
- Reacciones exotérmicas.
- Sustancias auto-oxidables.

Una vez garantizado el mayor control posible del nivel de riesgo de inicio del incendio se deberá tener en cuenta lo siguiente:

- Revisiones periódicas: Para garantizar la permanencia en el tiempo de la situación aceptable.
- Autorizaciones de trabajo en operaciones identificadas como peligrosas: Solo deben participar personas autorizadas, ya que éstas están debidamente formadas, informadas y cualificadas para realizar dichas operaciones y siguiendo los procedimientos de trabajo establecidos que garantizan que éstos se realizan de la manera prevista para el control de estos factores.

Una vez que se inicia el incendio, si no se actúa a tiempo y con los medios adecuados, se producirá su propagación y ocurrirán unas consecuencias con daños materiales y a los ocupantes. Para determinar la magnitud de las

consecuencias, los factores a analizar son las medidas de protección contra incendios. Estas medidas se dividen en medidas de protección pasiva y medidas de lucha contra incendios, también conocidas como de protección activa.

Medidas de protección pasiva.

- Aquellas medidas de lucha cuya eficacia depende de su mera presencia; no actúan directamente sobre el fuego pero pueden dificultar o imposibilitar su propagación, evitar el derrumbe del edificio o facilitar la evacuación o extinción.
- Ubicación de la empresa en relación a su entorno.
- Situación, distribución y características de los combustibles en el local.
- Características de los elementos constructivos de los locales: estabilidad al fuego (EF), detención de las llamas o para llamas (PF) y resistencia al fuego (RF).
- Exutorios.
- Exigencias de comportamiento ante el fuego de los materiales (M0, M1, M2, M3, M4).

En el sentido expresado, pueden así mismo considerarse medidas de protección pasiva una correcta señalización y la presencia de alumbrados especiales.

- Medidas de protección activa.
- Son las medidas de lucha contra incendios.
- Organización de la lucha contra incendios.
- Adiestramiento del personal en actuaciones de lucha contra incendios.
- Medios de detección de incendios.
- Transmisión de la alarma.
- Medios de lucha contra incendios (extintores, BIE, etc.).
- Vías de evacuación.
- Plan de emergencia.
- Facilidad de acceso de los servicios de extinción de incendios exteriores.

Mantenimiento de los sistemas de detección, alarma y extinción.

Los métodos existentes para evaluar el riesgo de incendio: son variados y utilizan distintos parámetros de medida para hacer la valoración. La utilización de unos u otros parámetros dependen de la finalidad que persiga el método de evaluación (minimizar las consecuencias materiales a la empresa, a personal propio o visitante o las consecuencias materiales y humanas a terceros) o de los criterios de evaluación del propio autor del método. Generalmente tienen en común que la mayoría de ellos valoran factores ligados a las consecuencias del incendio. La evaluación del riesgo de incendio constituye un tema de gran interés, existiendo una gran variedad de metodologías para tal fin. Esto es debido a la multitud de factores implicados en la valoración, a su variabilidad con el tiempo, a su interrelación, su dificultad de cuantificación y de la finalidad que persiga cada método. La gran mayoría de los métodos existentes evalúan solamente la magnitud de las consecuencias derivadas del incendio, y no tienen en cuenta la probabilidad de inicio del incendio. A continuación se describen brevemente algunos de los métodos más utilizados en la evaluación del riesgo de incendio y sus posibles aplicaciones. (Duarte, 2009).

• Método de los Factores α.

La finalidad de este método es parcial y consiste en determinar para un sector, en base al riesgo del mismo, la resistencia y/o estabilidad al fuego precisa, de forma que se garantice que, en caso de desarrollarse un incendio, sus consecuencias queden confinadas. Por ello, más que un método de evaluación del riesgo, se trata de un método de aislamiento del mismo.

Método de los Coeficientes k.

Al igual que el método anterior sólo permite evaluar las condiciones de resistencia/estabilidad al fuego de un sector de incendio. Sin embargo es más preciso en los resultados que el método anterior.

El método tiene su interés por haber sido contemplado por algunas de las Ordenanzas de Prevención y Protección contra Incendios de los Ayuntamientos de Madrid y Barcelona.

• Método de Gretener.

Es un método que permite evaluar cuantitativamente el riesgo de incendio, tanto en construcciones industriales como en establecimientos públicos densamente ocupados; siendo posiblemente el más conocido y aplicado en España. El método se refiere al conjunto de edificios o partes del edificio que constituyen compartimentos separados de manera adecuada que detienen o cortan la propagación del fuego o sencillamente cortafuegos.

El método parte del cálculo del riesgo potencial de incendio (B), que es la relación entre los riesgos potenciales presentes, debido al edificio y al contenido (P) y los medios de protección presentes (M).

B = P/M

Se calcula el riesgo de incendio efectivo (R) para el compartimento cortafuego más grande o más peligroso del edificio, siendo su valor.

R = B siendo el factor (A) el peligro de activación

Se fija un riesgo de incendio aceptado (Ru), partiendo de un riesgo normal corregido por medio de un factor que tenga en cuenta el mayor o menor peligro para las personas.

La valoración del nivel de seguridad contra incendios se hace por comparación del riesgo de incendio efectivo con el riesgo de incendio aceptado, obteniendo el factor seguridad contra el incendio (¡), el cual se expresa de tal forma que:

i = Ru/R

Cuando $j \ge 1$, el nivel de seguridad se considera SUFICIENTE, siendo INSUFICIENTE cuando j < 1.

Método de Gustav Purt.

(**Duarte**, **2009**). Este método puede considerarse una derivación simplificada del método Gretene.

1.3.2. Evaluación de riesgo de explosiones.

Las explosiones se caracterizan por una onda de choque que puede producir un estallido y causar daños a los edificios, romper ventanas y arrojar materiales a varios cientos de metros de distancia. Las lesiones y los daños son ocasionados primeramente por la onda de choque de la explosión. Hay personas golpeadas, o derribadas, o enterradas bajo edificios derrumbados, o heridas por cristales volantes. Aunque los efectos de la presión excesiva pueden provocar directamente la muerte, es probable que esto sólo se produzca con las personas que trabajan muy cerca del lugar de la explosión. Los efectos de la onda de choque varían según las características del material, su cantidad y el grado de restricción de la nube de vapor. Por consiguiente, las presiones máximas en una explosión varían de una ligera sobrepresión a una alta sobre presión. Según **PNUMA/IPCS**, (1999).

Sobre la explosión de un líquido en ebullición con desprendimiento de vapores en expansión referido **PNUMA/IPCS**, (1999) designa algunas veces como una bola de fuego, una explosión de este tipo es una combinación de incendio y explosión con una emisión de calor radiante intenso en un intervalo relativamente breve de tiempo. Como indica la expresión, el fenómeno puede producirse dentro de un recipiente o depósito en el que se mantenga un gas licuado por encima de su punto de ebullición atmosférico. Si un recipiente a presión se rompe como resultado de un debilitamiento de su estructura, el contenido se escapa al instante como una mezcla turbulenta de líquido y gas que se expande rápidamente y se dispersa por el aire como una nube. Cuando esta nube se inflama, se produce una bola de fuego, que origina una radiación térmica de enorme intensidad en unos

pocos segundos. Esta intensidad calorífica basta para causar muertes y graves quemaduras en la piel a varios cientos de metros del recipiente, según la cantidad del gas de que se trate.

(PNUMA/IPCS, (1999). Es posible hacer una distinción entre las explosiones de gases y las de polvos tomando como base el material de que se trate. Se producen explosiones de gases, que en general son catastróficas, cuando se liberan y dispersan con el aire considerables cantidades de material inflamable para formar una nube de vapor explosivo antes de que tenga lugar la ignición. Las explosiones de polvos se producen cuando materiales sólidos inflamables se mezclan intensamente con el aire. El material sólido dispersado adopta la forma de material pulverizado con partículas de dimensiones muy pequeñas. La explosión resulta de un hecho inicial, como un incendio o una pequeña explosión, que motiva que el polvo depositado sobre las superficies pase a ser transmitido por el aire, al mezclarse con el aire se produce una explosión secundaria que a su vez puede originar una explosión terciaria, y así sucesivamente concuerda SPC, (2002). Las consecuencias de las explosiones representan un peligro potencial para las personas. Usualmente se dividen los efectos de las explosiones en un número de categorías. Una clasificación básica consiste en diferenciar entre efectos directos y efectos indirectos.

- Efectos directos o primarios: Son los causados por las ondas de sobrepresión que se generan en una explosión. Causan lesiones en órganos vitales del cuerpo humano.
- Efectos indirectos: Este tipo de efectos se subdividen en secundarios y terciarios:
- Secundarios: Son los originados por los fragmentos y escombros que se desprenden en la explosión. Estos fragmentos pueden ser producidos directamente por la fuente de la explosión, o bien por otros objetos situados en los alrededores de la fuente que, debido a la sobrepresión, son expulsados con fuerza.

- Terciarios: Como consecuencia de la onda de sobrepresión que causa la explosión, las personas pueden sufrir desplazamientos de todo el cuerpo y colisionar con objetos estacionarios o estructuras (impacto total del cuerpo).

El interés de realizar esta distinción de los efectos radica en el hecho de que los efectos directos afectan siempre a todas las personas situadas dentro del radio de acción de la sobrepresión. Por contra, en los efectos indirectos entra el factor de la probabilidad de que las personas sean afectadas. Un efecto que no se clasifica en los grupos anteriores, pero que tiene que tenerse en cuenta, es el de las lesiones que pueden sufrir las personas dentro de edificaciones cuando la estructura se derrumba parcial o totalmente como consecuencia de la explosión (SPC,2002).

1.4 Técnicas de estimación y evaluación de riesgos. Evaluación de riesgos químicos.

El proceso de evaluación del riesgo para la salud humana asociado a la exposición de un producto químico, de forma objetiva se puede valorar, con toda la información disponible, sobre el impacto sanitario del riesgo químico. Este enfoque basado exclusivamente en indicadores de morbilidad y mortalidad, no es suficiente. Se debe desarrollar y sobre todo aplicar otras evaluaciones de riesgos, más profundas, para la salud. Actualmente uno de los métodos más apropiados se expone en **PNUMA/IPCS**, (1999), donde la evaluación del riesgo incluye las siguientes etapas:

- Identificación del peligro potencial: Es la confirmación de que un agente químico, es capaz en circunstancias adecuadas de causar un efecto adverso.
- Relación entre dosis (concentración) respuesta (efecto): Es la relación entre la dosis y la gravedad o frecuencia del efecto, o sea dosis – efecto y dosis – respuesta.
- Evaluación de la exposición: Se determina analizando la intensidad y la duración o frecuencia de la exposición a un agente.
- Caracterización del riesgo: En una evaluación de riesgos del efecto de las sustancias químicas, generalmente se examinan los siguientes efectos tóxicos potenciales para cada una de las posibles vías de exposición: oral

(por ingestión), dérmica (por absorción a través de la piel) y por inhalación. También se examinan las poblaciones humanas que son afectadas.

(PNUMA/IPCS, 1999). Para evaluar el riesgo se estudian esencialmente los acontecimientos internos, es decir, aquellos que tienen su origen en la propia industria. Conjuntamente se estudian también los acontecimientos externos, tanto los de origen natural (terremotos, inundaciones) como artificial (explosiones, incendios o nubes procedentes de plantas vecinas, accidentes de carretera) capaces de originar posteriores emergencias internas. Para estudiar los posibles accidentes internos, en primer lugar, se efectúa un análisis histórico. Se estudian los accidentes ocurridos en fábricas, procesos, instalaciones u operaciones parecidas a la que se está analizando. Este estudio facilita el establecimiento a prioridad de los puntos débiles del sistema. Si por ejemplo, se lleva a cabo el análisis de riesgo de un parque de depósitos de combustible, el análisis histórico demostrará que un elevado número de accidentes ha sido provocado por rebosamiento (sobrellenado) y vertido del combustible; por tanto, instalando en los depósitos un control automático de nivel provisto de alarma, se eliminará de entrada una de las fuentes de accidentes más probables. Las "Guías Técnicas" editadas por las Autoridades Competentes (DGPC-a, DGPC-b, DGPC-c), proponen esta técnica como método cualitativo de apoyo a otros sistemas de identificación de riesgos, que requieren una mayor dedicación y especialización técnica.

Ramos, (1990) y Wells, (1997) reflejan que entre las técnicas identificativas cabe destacar los métodos de análisis más utilizados.

 Métodos cualitativos: Auditoría de seguridad (Safety review) análisis histórico de accidentes, análisis preliminar de peligros (Preliminar Hazard Análisis, PHA), listados de control, análisis de peligro y operabilidad (Hazard and Operability Análisis, HAZOP) y análisis de modos de fallo y efectos (Failure Moda and Effect análisis, FMEA). Métodos semicuantitativos: índice Dow, Índice Morid, índice SHI y MHI (SubstanceHazardIndex and Material HazardIndex), árboles de fallos (FaultTree, FT) y árboles de sucesos (Event Tm, ET).

Estas técnicas se aplican a distintas etapas de la vida de los procesos industriales: diseño, construcción, puesta en marcha y funcionamiento de una operación normal, modificaciones del proceso y desmantelamiento o abandono de las instalaciones.

(Tapanes, 2010). La determinación de las zonas afectadas por peligro potencial y la evaluación de las consecuencias se puede realizar a través un software especializado, ALOHA (ArealLocations of HazardousAtmospheres, Localización de áreas de atmósferas peligrosas). Es un simulador que evalúa el desplazamiento y dispersión de vapores y gases. Fue elaborado por técnicos y especialistas estadounidenses en respuesta a las emergencias de los vertimientos de los vapores químicos. Este programa es capaz de proporcionar la información en situaciones donde haya vertimientos de vapores y gases, calculando el desplazamiento y la dispersión del mismo en la atmósfera. Predice la concentración de los contaminantes en la dirección de los vientos y el tiempo máximo al que pueden estar sometidas las personas a la nube inflamable dentro de las edificaciones protectoras.

Desventajas y limitaciones del Software.

- -Tiene en cuenta solamente componentes puros.
- -No analiza situaciones de fuego, ni reacciones químicas, ni mezclas de sustancias.
- -Si las velocidades del viento son muy bajas (inferiores a 1 m/s) el programa no puede predecir correctamente el campo de acción de la nube inflamable y puede generar deficiencia.
- -Si las condiciones atmosféricas son muy estables el programa no puede predecir correctamente el campo de acción de la nube inflamable.

- -ALOHA asume que la velocidad del viento y la dirección son constantes a cualquier altura dada, sin embargo, se sabe que el viento cambia su velocidad y su dirección constantemente y esto puede generar imprecisión en la respuesta.
- -No incorpora los efectos de fuegos, reacciones químicas, partículas, soluciones químicas o mezclas al modelo de pronóstico. **(Tapanes, 2010).**

1.5. Clasificación toxicológica de las sustancias por sus efectos sobre el organismo.

(**Duffus**, **1996**).Por su elevado interés para la prevención de enfermedades relacionadas con la exposición a preparados y sustancias peligrosas merece la pena destacar los criterios de clasificación según los efectos específicos sobre la salud humana.

Estos efectos se refieren a:

- Sustancias de toxicidad aguda.
- Sustancias irritantes.
- Sustancias corrosivas.
- Sustancias carcinogénicas.
- Sustancias mutagénicas.
- Sustancias tóxicas para la reproducción.
- Sustancias sensibilizadoras.
- Sustancias de toxicidad por dosis repetidas.

Toxicidad aguda: la toxicidad aguda se puede definir como el conjunto de efectos adversos que se producen dentro de un plazo corto (hasta 14 días) después de la administración de una sola dosis (o después de la exposición a determinada concentración) de una sustancia de prueba o después de dosis múltiples (exposiciones), generalmente en un lapso de 24 horas. La vía más común es la oral, pero este tipo de efectos también se puede estudiar mediante la absorción a través de la piel o por inhalación. Por lo general, se cuantifica al medir la concentración o dosis letal media (DL50 o CL50), es decir, la dosis o concentración derivada estadísticamente de un producto químico capaz de matar a 50% de los organismos de determinada población en condiciones definidas.

Según autores como **Duffus**, (1996); **Worth**, (1996); **Rodríguez** (2006); **Hernández**, (2009); **Acosta**, (2008).

Irritación: La irritación dérmica es provocada por las sustancias consideradas como irritantes de la piel causan una inflamación significativa que puede persistir al menos durante 24 horas después de un período de exposición de hasta cuatro horas y se determina comúnmente en estudios con conejos. La sustancia, líquido o sólido (0,5ml o 0,5g), normalmente se aplica en la piel con un parche de gasa en un área de 6 cm durante cuatro horas y el grado de irritación de la piel se "estima" en diferentes intervalos después de haber retirado el parche. (IUPAC, 1993); (Acosta, 2008).

Irritación del sistema respiratorio: La evidencia de una grave irritación en el sistema respiratorio generalmente se basa en la observación en seres humanos y en pruebas con animales y puede incluir datos obtenidos en una prueba general de toxicidad; por ejemplo, los datos histopatológicos del sistema respiratorio. (IUPAC, 1993); (Acosta, 2008).

Irritación de los ojos: Para la prueba de irritación de los ojos, se introduce la sustancia en el ojo (0,1mL o 100mg). La sustancia se clasifica como irritante si se producen lesiones oculares significativas en un lapso de 72 horas después de la exposición y éstas persisten durante 24 horas por lo menos (IUPAC, 1993); (Acosta, 2008).

Corrosión: Una sustancia se considera corrosiva (IUPAC, 1993); (Acosta, 2008), cuando al aplicarse a la piel animal intacta y sana, destruye totalmente el tejido cutáneo al menos en un animal durante la prueba de irritación de la piel. Es probable que no se requieran pruebas si se puede predecir el resultado; por ejemplo, si se usa un ácido fuerte (pH = 2) o sumamente alcalino (pH = 11,5).

Sensibilización. De acuerdo con autores como Klaassen, (1996); Acosta, (2008) este término se aplica a los procesos de inmunización que hacen que los individuos se tornen hipersensibles a sustancias como el polen, la caspa o compuestos químicos que les hacen desarrollar una alergia potencialmente dañina al estar expuestos a la sustancia sensibilizadora (alérgeno). Esta sensibilización puede surgir tanto por material inhalado como por contacto cutáneo.

Toxicidad por dosis repetida: Europea Comisión (1996), Acosta, (2008).

La dosis repetida por un período prolongado de una sustancia que probablemente no tenga ningún efecto con una sola exposición puede causar un grave trastorno funcional o cambio morfológico. Se realizan pruebas de toxicidad de dosis repetidas o sub-agudas que se prolongan por más de 14 ó 28 días para obtener información sobre la toxicidad de una sustancia química.

Este término se refiere a la capacidad que tienen algunas sustancias para modificar el material genético en el núcleo de las células de modo que ocurran cambios durante la división de éstas. Cuando las mutaciones se producen en las células germinales – esperma y óvulos – existe la posibilidad de que el embrión o feto muera o de que las mutaciones sean transmitidas a generaciones futuras. Cuando las mutaciones se producen en otro tipo de células, pueden ocasionar la muerte de ellas o la transmisión del defecto genético a otras células del mismo tejido. Se dispone de varias pruebas tanto en vivo como en vitro para detectar la mutagenicidad. En algunos casos las alteraciones genéticas pueden ser visibles a través de un microscopio. Otra técnica consiste en el ensayo letal dominante, que usa la incompatibilidad de algunas mutaciones con el desarrollo normal.

Carcinogenicidad: Aunque los estudios epidemiológicos Europea Comisión (1996); Acosta, (2008) han sido la principal fuente de información sobre los carcinógenos humanos potenciales y presentan la ventaja de estudiarla especie de principal interés, el ser humano, muchas veces presentan problemas porque la exposición está mal definida y porque hay variables de confusión que pueden distorsionar cualquier asociación estadística. Aunque muchos carcinógenos son mutágenos y se consideran causantes de mutaciones que provocan cáncer (carcinógenos genotóxicos), otros no parecen serlo y actúan con mecanismos diferentes (carcinógenos no genotóxicos o epigenéticos).

Toxicidad para la reproducción: Según autores como Faustman, (1996); Omen, (1996); Acosta, (2008), este término incluye la deficiencia de las funciones o capacidad de reproducción masculina y femenina así como la inducción de efectos dañinos no hereditarios a la descendencia.

1.6 Riesgos asociados al trasiego y preparación del petróleo crudo.

Méndez, (2004) y Correa, (2004). Plantean que la gestión comercial de la organización comercial de Cuba-petróleo tiene como uno de sus eslabones primordiales, la transportación de sustancias peligrosas .La participación del hombre en este sentido es determinante, constituyendo la esencia fundamental dentro del sistema de seguridad. En dichos procedimientos son imprescindibles un sin número de restricciones de seguridad, cuya aplicación correcta y pertinente ayudan a minimizar los riesgos que llevan implícitos. Su acción apropiada permite reducir, los riesgos inherentes, haciendo el proceso cada vez más seguro. El diseño de los medios de transporte, son cada vez de mayor seguridad, nunca pueden ser definitivamente seguros o a prueba de errores humanos. La complejidad y responsabilidad de estas operaciones, donde se trasladan volúmenes considerables de combustibles, las condiciones de trabajo y el siempre posible acontecimiento, de un fallo no previsto son factores que hacen de la correcta operación un eslabón tan importante como el diseño inicial. No se puede asegurar que un proceso bien diseñado y con la mejor tecnología existente no pueda sufrir una avería grave debido a un fallo operacional, mantenimientos inadecuados, etc. Igualmente un proceso originalmente seguro puede dejar de serlo, si no se maneja y mantiene con el máximo cuidado. Para la seguridad de estas operaciones, se requiere de medios técnicos adecuados, personal calificado y disciplinado. En las entidades de la organización se elabora un procedimiento general que incluye carga, descarga, transportación y distribución de:

- Crudo.
- Líquidos combustibles.
- Líquidos inflamables.
- Gases combustibles.
- Sustancias tóxicas no incluidas en las anteriores.
- Distribución mayorista de líquidos inflamables.
- Distribución mayorista de líquidos combustibles.

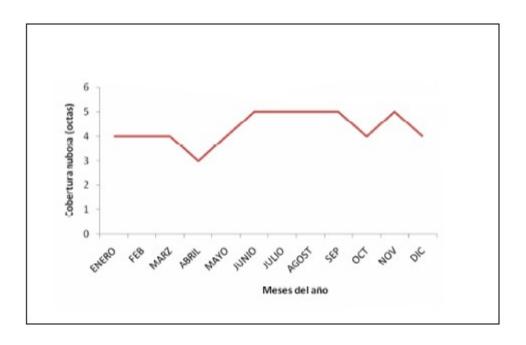
(Correa, 2004). En la actividad de carga y descarga de camiones cisterna los análisis de causas de los accidentes de trabajo y el conocimiento adquirido ante

conductas y situaciones peligrosas, pone de visible la necesidad de crear un esquema sistemático de actuación que, de forma secuencial, aborde las distintas etapas que consta una tarea, al unísono que permita introducir funciones concretas para crear condiciones de trabajo seguras en todas ellas. Se debe requerir para este proceder un análisis minucioso previo de todas y cada una de las operaciones que compone una actividad. Con la creación de programas automatizados de carga, en los que la sistemática secuencial se traduce en unos sistemas operativos de puertas lógicas, de forma que cada estadio resulta inaccesible de no haberse consumado íntegramente los sucesos del estadio anterior, se han mejorado principalmente las condiciones de seguridad en este tipo de operaciones. La experiencia, sin embargo, viene a poner de manifiesto que ello no es suficiente. Así, por ejemplo, la simultaneidad de un error en una programación o el mal estado de un medidor de flujo con unos sensores de nivel contra rebosamiento deficientemente limpio o defectuoso, puede conllevar derrames y vertidos .Una señal deficiente en los dispositivos de carga o la selección errónea de un comportamiento, puede facilitar situaciones peligrosas. Esto coloca en tela de juicio, que no basta con la tecnología avanzada incorporada a esta actividad, sino que la fragilidad de sus esquemas, la hace vulnerable, siendo preciso, la adopción y el concurso de algunos juicios preventivos.

Se consideran, según **Correa, (2004)** materias líquidas inflamables, a los efectos del Reglamento Nacional del Transporte de Mercancías Peligrosas por Carretera (TPC/RD 74/1992), aquellos productos que a 50 °C tengan una tensión de vapor máxima de 300 KPa (3 bar) y un punto de inflamación máximo de 100 °C. Quedan excluidos aquellos líquidos inflamables que, a causa de otras propiedades peligrosas suplementarias, están enumerados o asimilados a otras clases de TPC. El punto de inflamación, se define como la temperatura mínima a partir de la cual el producto desprende vapor en cantidad suficiente como para formar una mezcla que puede arder en el aire.

La presión de vapor o la volatilidad de un producto es factor determinante en la cantidad de vapor que se desprende a una determinada temperatura. Los líquidos inflamables tales como la gasolina, tienen altas presiones de vapor y un punto de

inflamación muy bajo (por debajo de 0 °C); sus vapores tres veces más pesados que el aire, tienden a depositarse en los emplazamientos bajos, formando mezclas explosivas, con concentraciones entre el 1 y el 7 % de vapor en aire. Este suceso, no ocurre en otros líquidos combustibles como el gas óleo, fuel óleo, etc, cuyas presiones de vapor son bajas y sus puntos de inflamabilidad altos (superiores a 55 °C). Estas precisiones permitirán abordar un aspecto de gran trascendencia en el almacenamiento y expedición de cierta clase de productos, como es la inertización. Viene a poner de manifiesto la importancia que tiene el conocimiento de las características de esta clase de productos (peligrosidad intrínseca) no solo para las personas que lo manipulan, sino también para el público en general, dado su consumo generalizado.


1.7 Resultados de la caracterización del clima de la zona objeto de estudio.

El clima responde a una serie de condiciones físico-geográficas del lugar. La situación geográfica, en la zona tropical, garantiza energía suficiente durante todo el año, para favorecer la ocurrencia de características climáticas tropicales. No obstante la cercanía a la zona extra tropical y al continente norteamericano, así como la influencia de la zona de altas presiones norteamericanas, garantizan la llegada de condiciones subtropicales, de manera intermitente, unas veces más, otros menos en una parte del año. La orografía y el relieve es otro aspecto a tener en cuenta a la hora de analizar el comportamiento del clima, sobre todo en la influencia que tiene en la ocurrencia de fenómenos meteorológicos como las nieblas.

A continuación se describe el comportamiento de las principales variables climáticas analizadas.

1.7.1 Nubosidad.

Los mínimos de distribución de días nublados se presentan generalmente en las zonas costeras, que es donde precisamente ocurre el máximo de días despejados, precisamente el mayor número de días de este tipo (más de 100 al año) ocurre en las costas de esta región.

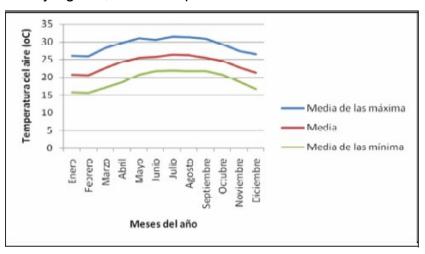


Figura 3.1: Comportamiento medio de la nubosidad para la zona objeto de estudio en la década analizada.

En la figura anterior se puede observar que el mes del año con menos nubosidad es Abril y que los mayores valores de la misma se registran en Junio, Julio, Agosto y Septiembre. En el anexo 1 tabla 1a se puede apreciar con más detalles el comportamiento de esta variable.

1.7.2. Temperatura del aire.

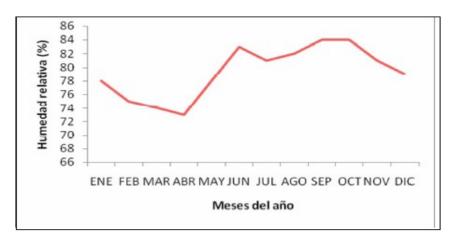
La temperatura del aire del territorio alcanza su máximo anual en los meses de Julio y Agosto, mientras que el mínimo de la marcha ocurre en Enero y Febrero.

Figura 3.2: Marcha anual media de la temperatura del aire para el territorio en la década analizada.

Fuente: Tapanes, (2010); Moya (2010).

La zona en estudio se caracteriza por una temperatura media anual de 23.8 °C, registrándose los valores más elevados del año en los meses de Julio (26.3°C), y Agosto (26.1 °C), mientras los más bajos promedios mensuales se registran en Febrero (20.5 °C) y Enero (20.6 °C). El análisis de las temperaturas máximas promedio, se muestra en la figura 3.2, donde Julio y Agosto aparecen como los meses más cálidos con 31.4 y 31.3 °C respectivamente. En la misma figura, se presentan los valores medios de temperatura mínima, donde se observa a Enero y Febrero como los meses más fríos con 15,7 y 15,6°C de temperatura mínima promedio respectivamente.

Debe señalarse que los datos obtenidos para cada uno de los meses del año para la década analizada fueron procesados estadísticamente mediante el programa Statgraphics Plus 5.1(2001) donde pudo comprobarse que los coeficientes de variación de la temperatura para cada uno de los meses del año no supera el 3 %. Esto garantiza una alta estabilidad del comportamiento del parámetro durante toda la década para el mes en cuestión.


El comportamiento del régimen térmico define la zona como un régimen de tipo costero, caracterizado por un régimen térmico muy cálido, con días cálidos de pequeña oscilación diaria y días frescos.

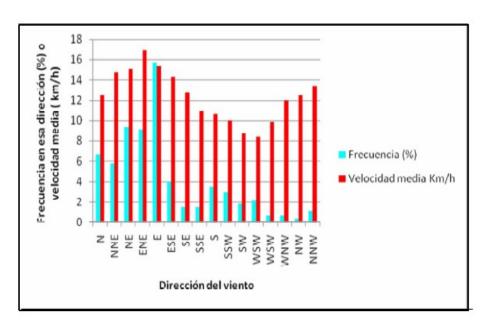
Existen en el año dos períodos definidos, de Mayo a Septiembre, con un predominio de días muy cálidos y otro de Noviembre a Marzo con días agradablemente cálidos o frescos aunque en ocasiones pueden llegar a ser estas características y que se definen como pequeños períodos de tránsito, quedando definido del análisis del régimen térmico con cuatro épocas fundamentales: un verano, un invierno y dos períodos de transición: uno del invierno al verano y otro del verano al invierno.

1.7.3 Humedad del aire.

La humedad relativa muestra valores elevados durante el año dada la cercanía a la costa de la zona. El promedio anual es de 79 %, con valores medios mensuales

superiores a 75 % durante casi todo el año, sólo durante Abril, que constituye el mes menos húmedo del año alcanza un valor del 73 %, mientras en Septiembre y Octubre, los meses de mayores reportes de humedad relativa alcanza valores del 84 % (observar figura 3.3).

Figura 3.3: Comportamiento de la humedad relativa media de la zona objeto de estudio para la década analizada.


Fuente: Tapanes, (2010); Moya (2010).

De igual forma que para la temperatura del aire se analizó la variabilidad de este parámetro y en ningún mes el coeficiente de variación supera el 2 % garantizándose la estabilidad de la variable para cada uno de los meses de la década analizada.

1.7.4. Viento.

El viento predominante en la zona es del Este, con una frecuencia de ocurrencia de 15.19 %, seguido del ENE con una frecuencia de 9.16 %. Si se suma la frecuencia de los vientos del primer cuadrante (N-E), ambos inclusive y la de los siguientes rumbos cercanos al E, ESE y SE la frecuencia de ocurrencia de estos vientos alcanza un valor de 57.84 %, más un 25.28 % de frecuencia de las calmas, dejan al resto de los vientos de otros rumbos menos de un 20 % de frecuencia de ocurrencia.

A continuación en la figura 3.4 se refleja la frecuencia de ocurrencia de cada uno de los vientos por rumbos y la velocidad media con que sopla en esa dirección.

Figura 3.4: Comportamiento de la velocidad del viento y la frecuencia de ocurrencia para cada dirección en la zona objeto de estudio.

Fuente: Tapanes, (2010); Moya (2010).

Capítulo 2: Materiales y métodos.

2.1 Caracterización del proceso.

La Base de Crudo y Suministro (BCS) está destinada, para la recepción de Petróleo Crudo Nacional (PCN) por medio de los Oleoductos de Occidente (Puerto Escondido), Centro (Varadero) y las pailas (carro cisterna) y para el almacenamiento y entrega con facilidades a todos los muelles de las instalaciones, de Petróleo Crudo Nacional Mejorado (PCNM) y PCN a buques tanques con destino a diferentes puntos del país. Además desde esta base se puede trasegar producto a otras áreas como las áreas 2,3 y 4 y comercializar por medio de vagones de ferrocarriles. En la base de crudo se preparan las mezclas de Petróleo Crudo Nacional Mejorado (PCNM), esta mezcla se obtiene a partir de la unión del Petróleo Crudo Nacional y una dosis de solvente (Nafta), la cual se inyecta en la línea con el fin de rebajar los parámetros de viscosidad a valores del orden de

650, 1100 y 1400 CST de forma que sean asimilados por los consumidores de este tipo de combustible. Para dispersar los asfáltenos, presentes en el crudo se le adiciona aditivo Bycosin (DP-99001), que además mejora otros parámetros como el contenido de vanadio, que lo disminuye y eleva el valor calórico del producto , logrando así mejor combustión en calderas principalmente de las CTE.

El área #2 ó Base de Suministro a la CTE: Está compuesta por dos sub.- áreas fundamentales:

- Área 2-1 (área de estación cabecera de los oleoductos a las CTE Santa Cruz y Antonio Guiteras).
- Área 2-2 (área de tanques).

El área 2-1 se compone de 4 bombas: (cuales son reciprocantes y centrifugas) (IP102 D y IP-102 A, de 120 m3/h de caudal, IP-102 BM y IP- 102 AM, de 45 m3/h), que se utilizan para bombear PCNM de una viscosidad de 1100 CST de los tanques para a la CTE Santa Cruz pasando por un filtro F- 102 A/B, y por un intercambiador de calor de tubo y coraza IE-102 A manteniendo la temperatura a 80 °C ± el producto saliente y se dispone de un flujómetro (M-132 D) para medición y control de las cantidades de producto bombeado. Se utiliza bomba de pistones de 36 m3/h de caudal para desplazamiento y bombeo por el Oleoducto Santa Cruz.

Para el oleoducto a CTE Antonio Guiteras se bombea PCNM a 1400 CST de viscosidad con 2 bombas de tornillos para este fin (IP-103 A y IP-103 B de 96 m3/h), utilizando un filtro (IF-103 A/B), y un intercambiador IE-102 B de tubo y coraza, logrando que la temperatura a la salida sea de 70 °C ±, se dispone de un flujómetro (M-116 D) para medir cantidades de petróleo bombeado.

En esta área se utilizan 2 bombas de tornillos de 440 m3/h de caudal cada una para trasvasar producto del área 2-2 (tanques 30 y 38 de petróleo combustible (fuel oíl) y tanque 39 de Nafta) y el área 3 (tanques 41 y 42 de nafta) al área 4 (tanques 33,34,35,36 y 37 para PCNM 650,1100 ó1400 CST), y a los tanques de

Base en Tierra (tanques 49,50,51 y 52 de fuel oíl y PCNM) muelles Frank País, muelle PT-1, PC-2 y Bayona. Se encuentra ubicado en esta área un tanque de de 15 metros cúbicos de capacidad, con el objetivo de aliviar presiones que sobrepasen los 10 Kg. /cm2 en el sistema, este trabaja por medio de una válvula automática que controla por medio de un barómetro la presión en la línea.

Para el inyecto de solvente (nafta), se encuentra conectada a los oleoductos una bomba de inyecto de 30 m3/h de caudal con el objetivo de disminuir la viscosidad del producto, en caso de una parada prolongada de los oleoductos.

En el sistema están acopladas tuberías y válvulas tecnológicas para el buen funcionamiento de las operaciones, cada una con una nomenclatura particular en el caso de las válvulas y para las tuberías se identifican por los diferentes diámetros que presentan cada una de ellas.

El área 2-2 se compone de:

Dos tanques (TK-30 y TK-38) de 10 000 m3 de capacidad, almacenan petróleo crudo nacional y petróleo combustible (fuel oíl), para la comercialización.

El tanque (TK-39) ubicado también en esta área almacena solvente (nafta), con una capacidad de 1000 m3; se utiliza para el inyecto de nafta en el área 2-1. El área 3, destinada a la recepción y almacenamiento de solvente (nafta), para la elaboración de mezclas (PCNM), está compuesta por dos tanques de almacenamiento (TK-41 de 5000 m3 y TK-42 de 4000 m3).

Nota: En la instalación todas las bombas, destinadas para operaciones con crudo, son de desplazamiento positivo.

La empresa también posee 3 tanques (TK-22, TK-23 y TK-13) de 10 000 m3 de capacidad para almacenamiento de turbo, otros 3 (TK-24, TK-25, TK-26) de contenido diesel con igual volumen y diámetros 34,20 m para cada uno, además de tener almacenados 3 volúmenes diferentes de gasolina de aviación, (TK-18, de 2000 m3, TK-19 con 800 m3, TK-20 de 1000 m3 y TK-21 de 960 m3)

2.2 Caracterización del software ALOHA.

La ocurrencia de un riesgo industrial pone en peligro desde la calidad del proceso, hasta la pérdida de vidas humanas, ya que pueden producir emisiones de contaminantes peligrosos y explosiones, que afecten el medio ambiente. De producirse un accidente es posible hacer la evaluación analizando en qué medida pueden afectar una región determinada, lo que posibilita la confección de planes de prevención y permite preparar tanto al personal de la industria como a los ciudadanos ante un evento de este tipo.

El software ALOHA de sus siglas Locations of Hazardous Atmospheres de la Agencia de Protección Ambiental (EPA) de los EEUU es un programa de computación que permite predecir las cantidades de vapores químicos que pueden escapar a la atmósfera a través de tuberías, tanques, por evaporación, explosiones, etc., establece las áreas de alcance.

Características y particularidades del software ALOHA en la evaluación de las consecuencias de los accidentes industriales.

La versión que se utiliza es la 5.4.1 de Febrero del 2007, lo que constituye un software muy actualizado para este tipo de evaluación. Una de las características que posee es que emplea una serie de términos no conocidos relacionados con la ocurrencia del fuego, explosiones, y otros escenarios peligrosos, a lo cual se hace referencia:

Se modelan tres categorías peligrosas:

- 1. Dispersión de gas tóxica.
- 2. Fuegos.
- 3. Explosiones.
- Se basan en los modelos de Dispersión del Aire para estimar el movimiento y dispersión de la nube de gas químico.

- Se estima: Dispersión de gas tóxica, valores de sobrepresión desde la explosión de una nube de vapor y el área inflamable de la nube de vapor.
- Modela las áreas para emisiones de corta duración de compuestos peligrosos claves: Tóxicos, inflamables, radiación térmica sobrepresión que pueden exceder los niveles de interés especificados por el usuario (Levels of Concern LOCs). Los resultados son representados en diagramas Y vs. X donde nos indica la amplitud del área de localización en el eje Y y su alcance en el eje X (Threat zone plot).

Constituye una herramienta que se usa para:

- Respuesta de emergencia.
- Planificación.
- Propósitos académicos.

No puede ser usado para:

- Emisiones de sustancias radioactivas.
- Licencias ambientales de chimeneas de gases.
- Emisiones fugitivas.
- La dispersión de los químicos en el aire es un término usado por los especialistas que incluye la advección y la difusión. Una nube de gas dispersándose se moverá por advección en la dirección del viento y por difusión en viento cruzado en la dirección vertical del viento. Utiliza dos modelos: Modelo Gamusino: Para los gases que tienen la misma densidad que el aire y el Modelo de Gases Pesados utilizado para los gases que son más pesados que el aire donde son emitidos.
- Algunos de los términos usados son:
 - Gas pesado: Gases con peso molecular superior al peso molecular del aire.

- ❖ También gases que son más ligeros que el aire almacenado a bajas temperaturas (estado criogénico).
- Flash boiling: Vaporización brusca de un líquido causada por baja presión.
- ❖ Two-Phase flow: Cuando las fases líquida y gaseosa de un compuesto químico escapan juntos desde la ruptura de un tanque.

Tabla 2.2 Resumen de las diferentes fuentes y escenarios de trabajo del ALOHA.

Fuente	Escenarios tóxicos		os	Escenarios de fuego	Escenarios explosivos		
Directa							
Desprendimiento	Nube	tóxica	de	Area inflamable (Llamarada	Nube	tóxica	de
Directo	vapor			de fuego)	Explosión		
Charco							
Evaporación	Nube	tóxica	de	Area inflam able (Llam arada	Nube	tóxica	de
Lvaporacion	vapor			de Fuego)	Explosión		
Inflam a ble (Pis cin a				Piscina de Fuego			
de Fuego)				riscilla de ruego			
Tanque					'		
No inflam able	Nube	tóxica	de	Area Inflamable (Llamarada	Nube	tóxica	de
NO IIIIaili abie	vapor			de Fuego)	Explosión		
Inflam a ble				Chorro de fuego o Piscina			
IIIIaiii a bie				de Fuego			
Explosión de vapor							
por la expansión de	la expansión de BLEVE (Bola de fuego y						
un líquido en				piscina de fuego)			
ebullición.				piscina de luego)			
Tuberias de gases							
No inflam able	Nube	tóxica	de	Area Inflamable (Llamarada	Nube	tóxica	de
INU IIIIIaili aule	vapor			de fuego)	Explosión		
Inflam a ble (Chorro				Charra da fuana			
de fuego)				Chorro de fuego			

Fuente: Manual de Usuario, ALOHA (2007).

Las propiedades que condicionan un fuego son:

- Volatilidad: Medida de como un compuesto químico fácilmente se evapora.
- Punto o temperatura de inflamación (Flash Point): Es la más baja temperatura donde un líquido inflamable evapora lo suficiente para alcanzar un fuego sin la fuente de ignición presente.
- Límites de Inflamabilidad. Llamado Límite de Explosividad Inferior (LEL) y Límite de Explosividad Superior (UEL).

Si el compuesto químico en fase vapor se pone en contacto con la fuente de ignición, solo se producirá el fuego si la relación aire-combustible está entre LEL y UEL. Compuestos con alta volatilidad y bajo temperatura de inflamación tienen bajos valores de LEL. Se conoce lo que se llama Triángulo de fuego: Combustible, oxígeno y calor. Si uno de estos componentes se elimina el fuego cesa. ALOHA no modela subproductos del fuego: Hollín, humo, ceniza y compuestos químicos de la reacción. Los niveles de radiación térmica se indican a través del LOC.

El LOC es un nivel que marca el inicio de la radiación térmica, usualmente el nivel sobre el cual este peligro puede ocurrir.

Se utilizan tres valores de LOC, medidos en Kw/m2:

- ➤ Rojo: 10 Kw /m2. Potencialmente letal en el intervalo de 60 segundos.
- Naranja: 5 Kw /m2 .Quemaduras de segundo grado en el intervalo de 60 segundos.
- Amarillo: 2 Kw /m2. Dolor en 60 segundos.

Los niveles de sobrepresión están dados por el nivel de presión de la onda de explosión sobre el cual el peligro puede existir, que son:

- ✓ Rojo: 8 psi (destrucción de edificios).
- ✓ Naranja: 3,5 psi (serios daños).
- ✓ Amarillo: 1 psi (destrozos de cristales).

ALOHA no modela los fragmentos peligrosos de una explosión. ALOHA modela cinco tipos de escenarios de fuego y explosiones asociados con emisiones de compuestos químicos.

- 1. Chorros de fuego.
- 2. Piscinas de fuego.

- 3. Explosión de vapor por la expansión de un líquido en ebullición.
- 4. Áreas inflamables.
- 5. Explosión de una nube de vapor.

La explicación de estos escenarios puede verse en el manual de usuario ALOHA (2007).

Otras particularidades de este software son:

- > Este programa debe trabajarse con cuidado para predecir diferentes situaciones, las cuales son consideras sus limitantes:
- Velocidades del viento muy bajas.
- Condiciones atmosféricas muy estables.
- Irregularidades de la concentración del compuesto químico particularmente cerca de la fuente.
- Además el modelo no incorpora efectos de:
 - Reacciones químicas.
 - Partículas.
 - Mezcla de compuestos químicos.
 - Terreno.
 - Fragmentos peligrosos.

El programa cuenta con una librería de compuestos químicos de interés, sobre la base de datos DIPPR (Department of Chemical Engineering of Brigham Young University for the Design Institute for Physical Property Data (DIPPR) of the American Institute of Chemical Engineers) donde aparecen las principales propiedades físicas y químicas y tiene en cuenta a diferencia de

versiones anteriores algunas soluciones, tales como ácidos anhídridos en agua, ácidos fluorhídricos en agua.

La organización básica del programa consta de varios pasos que son:

- 1. Indicar la ciudad donde puede ocurrir el accidente químico.
- 2. Seleccionar el compuesto químico.
- 3. Dar la información de las condiciones meteorológicas en el período que se realiza la predicción del evento.
- 4. Describir como los compuestos químicos escapan a la atmósfera.
- 5. El software ALOHA da su respuesta mostrando en el monitor un diagrama denominado Threat Zone, el cual muestra el área donde las concentraciones del compuesto químico en el aire pueden ser suficiente altas que provoque afectaciones a la población, en los tres niveles de LOC.

Las clases de estabilidad están ordenadas en A, B, C, D, E, F, correspondiendo con:

- A, B: se consideran atmósferas inestables, cuando la radiación solar es moderada a fuerte, el aire cercano a la superficie de la tierra genera remolinos grandes.
- E, F: considerándose atmósferas estables, para la radiación solar débil o ausente, el aire cercano a la superficie de la tierra reduce su tendencia a elevarse y desarrolla menor turbulencia, las velocidades del viento son débil.
- D, C: se considera atmósferas inestables, con velocidades del viento relativamente fuerte, y moderada radiación solar.

En el caso que se suministre que ocurre la inversión hay que dar la altura a la cual ocurre este proceso.

Para entregar los datos de humedad del aire se podrá indicar el valor particular o dar los casos extremos, húmedo medio o seco.

Los resultados que se obtiene del software, además de los gráficos pueden ser encontrados en un texto sumario.

Datos del sitio. Datos del químico. Datos atmosféricos. Fuente Directa. Zona Tratada. Manual de usuario ALOHA (2007).

• Para la mejor comprensión de los resultados cualitativos de este software se hace referencia a los diferentes LOC que se utilizan:

AEGL: Las siglas representan los niveles de LOC para una exposición agua, de ahí la sigla Acute Exposure Guideline Levels, son los lineamientos de los niveles de una exposición aguda.

ERPG: Las siglas, se utilizan para la planificación de los planes de emergencia, de ahí Emergency Response Planning Guidelines.

ERPG-1: Es la concentración en el aire bajo la cual se considera que los individuos expuestos pueden sufrir efectos moderados sobre su salud y percibir claramente un olor desagradable.

ERPG 2: Es la concentración en el aire bajo la cual se considera que los individuos expuestos pueden sufrir efectos irreversibles sobre su salud o síntomas que les impida tomar decisiones para protegerse.

ERPG 3: Es la concentración en el aire bajo la cual se considera que los individuos expuestos a ella se encuentran en condiciones de riesgo para su vida.

TEEL: Las siglas se utilizan cuando no se conocen exactamente los valores de ERPG para un compuesto químico, ya que representa los niveles temporales, Temporal Emergenccy Exposure Levels.

TEEL-1: Es la concentración en el aire bajo la cual se considera que los individuos expuestos pueden sufrir efectos moderados sobre su salud y percibir claramente un olor desagradable.

TEEL-2: Es la concentración en el aire bajo la cual se considera que los individuos expuestos pueden sufrir efectos irreversibles sobre su salud o síntomas que les impida tomar decisiones para protegerse.

TEEL-3: Es la concentración en el aire bajo la cual se considera que los individuos expuestos a ella se encuentran en condiciones de riesgo para su vida.

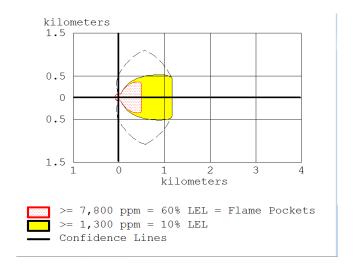
IDLH: Las siglas están relacionadas con los niveles permisibles de exposición del hombre a compuestos químicos en zonas de trabajo sin afectar la salud y la vida, de ahí las siglas Inmediatly Dangerous to Life or Health. No está designado para ser tomado como un límite de exposición a toda la población ya que no está definido en correspondencia con la sensibilidad de algunas personas como los niños. No deben usarse los valores del IDLH para identificar definitivamente condiciones peligrosas en términos generales.

2.3. Establecimiento de las condiciones de trabajo con el software.

A partir de los resultados obtenidos en los estudios anteriores se definió estudiar la formación de áreas peligrosas en los escenarios de nube inflamable y explosión esta última bajo sus dos condiciones de ignición, para las sustancias siguientes: nafta, turbo, diesel y gasolina de aviación.

Temperatura del aire: en el caso específico de la temperatura se decidió tomar los valores medios de la máxima de los meses comprendidos entre Abril y Octubre debido a que se seleccionó las condiciones más favorables para la ocurrencia de los accidentes vinculados a los escenarios de incendios y explosión, en correspondencia con los resultados brindados por (**Moya ,2010**).

Humedad relativa: se trabajó con los valores medios, según lo recomienda (Tapanes, 2010); (Moya ,2010).


Nubosidad: se toman los valores medio de la nubosidad para cada mes estudiado.

Viento: para este caso se tomaron todas las direcciones del viento. (Tapanes, 2010); (Moya ,2010).

3. Capítulo III. Resultados y Discusión.

3.1. Estimación de las áreas peligrosas del escenario nube inflamable.

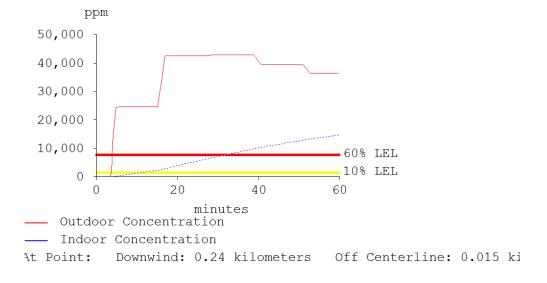
Se estiman las áreas que abarcan la nube inflamable para cada una de las sustancias, atendiendo a los parámetros climatológicos, obteniéndose el resultado que se muestra en la figura 3.1.1.

Figura 3.1.1. Comportamiento de la dispersión de la nube inflamable de gasolina en las zonas exteriores.

Fuente: Elaboración propia.

Sustancia: Gasolina.

Mes: Julio.


Dirección del viento: Oeste Sur Oeste.

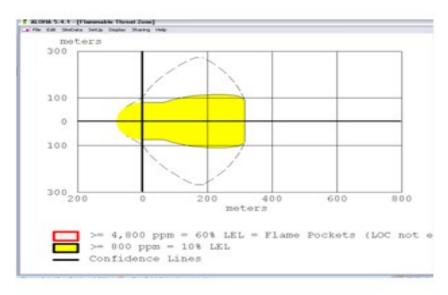
Este caso se refiere a la formación de una nube de vapor del químico que entra en contacto con una fuente de ignición externa, al poseer la nube una concentración que se encuentra entre los límites de inflamabilidad se convierte en una nube inflamable que tiene áreas de peligro muy bien definidas. En el grafico que se muestra anteriormente aparecen solo dos zonas, la roja y la amarilla. La zona de mayor peligro, es decir la roja llega hasta 804 metros medidos en la dirección del viento. En el borde exterior de esta área (roja) se alcanza una concentración de la sustancia correspondiente al 60% del límite inferior de inflamabilidad, que de

hecho ya resulta una concentración de atención por su cercanía a las concentraciones a las cuales se puede producir la inflamación de la nube. Del borde exterior de la zona roja hacia la izquierda, del grafico, las concentraciones del químico se encuentran todas dentro de los límites inferiores y superiores de inflamabilidad, por lo cual se infiere que toda esta zona es muy peligrosa pues puede inflamarse ante una fuente de ignición.

La zona amarilla alcanza 1.8 kilómetros en la dirección del viento, con una concentración de 1300 ppm de la sustancia por lo que solo alcanza un 10% del límite inferior de inflamabilidad, obviamente esta zona no es peligrosa pues no es posible que llegue a inflamarse.

Estos escenarios se analizan para condiciones climatológicas bien definidas los cambios en algunas de ellas como por ejemplo la dirección del viento y la velocidad o la temperatura ambiente modificarían las áreas de este mismo escenario.

Figura 3.1.2. Comportamiento de la dispersión de la nube inflamable de la gasolina en las zonas interiores y exteriores con respecto al tiempo a una distancia fija.

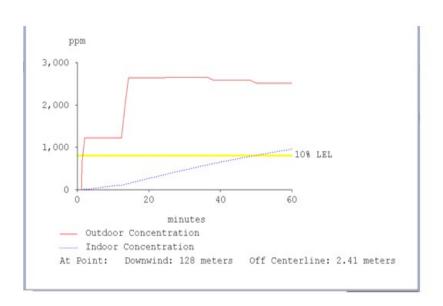

Sustancia: Gasolina.

Situándose a 0.24 kilómetros en la dirección del viento y a 0.015 kilómetros de la línea central de la grafica se puede obtener del software ALOHA, un nuevo gráfico como el que aparece anteriormente.

En este grafico se pude observar que entre los 8 y 10 minutos en el interior de los locales de cualquier edificación que se encuentren en la zona afectada se alcanza una concentración de la sustancia del 10% del LEL y solo cuando han transcurrido aproximadamente 30 minutos es que se alcanza en los locales interiores una concentración de un 60 % del LEL, donde la nube que invade el local interior no es aún inflamable, una vez sobrepasado estos 30 minutos las concentraciones son superiores al 60% del LEL, llegándose alcanzar concentraciones del orden de los 13000 ppm y algo superior a este valor, por lo que la nube que está dentro del local ya es inflamable por lo que es altamente peligrosa.

En la zona exterior apenas transcurrido 4 minutos aproximadamente se alcanza una concentración alrededor de los 24000 ppm ,superior a la concentración de los 13000 ppm que representan el límite inferior de inflamabilidad , de manera tal que a escaso minutos en el exterior la nube es sumamente inflamable.

A los 30 minutos la nube llega a tener una concentración próxima a los 42000 ppm acentuándose su carácter inflamable. Resulta interesante hacer notar que en este mismo momento en los locales interiores ya se estaba alcanzando concentraciones peligrosas por lo que el peligro para los trabajadores es alto.


Figura 3.1.3. Comportamiento de la dispersión de la nube inflamable de nafta en las zonas exteriores.

Sustancia: Nafta.

Mes: Julio.

Dirección del viento: Oeste Sur Oeste.

En el grafico que se muestra anteriormente aparecen solo una zona, la amarilla alcanza 317 metros en la dirección del viento, con una concentración de 800 ppm de la sustancia correspondiente a un 10% del límite inferior de inflamabilidad, por tanto esta zona no es peligrosa, pues no es posible que llegue a inflamarse. Según los resultados del software la nube se haría inflamable solo si alcanza 8000 ppm, lo cual corresponde con el LEL.

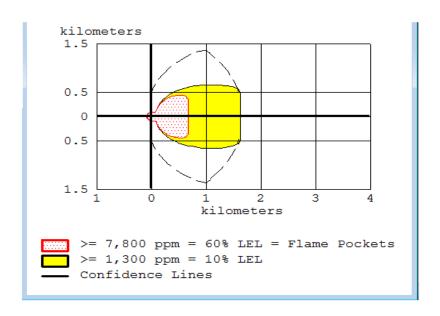


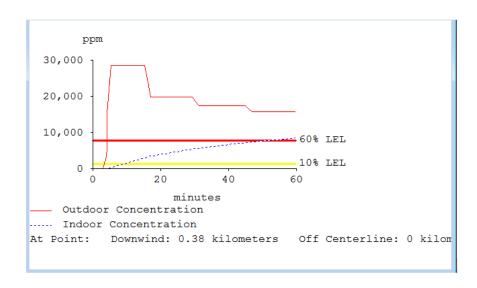
Figura 3.1.4. Comportamiento de la dispersión de la nube inflamable de la nafta en las zonas interiores y exteriores con respecto a tiempo a una distancia fija.

Sustancia: Nafta.

Situándose a 128 metros en la dirección del viento y a 2.41 metros de la línea central de la grafica se obtiene del software ALOHA que a los 50 minutos en el interior de los locales se alcanza una concentración de la sustancia del 10% del LEL, es decir 800 ppm y en ningún momento se alcanza una concentración correspondiente al 60% del LEL, por lo que esta nube no representa un peligro desde el punto de vista inflamable.

En la zona exterior se nota claramente en el grafico que nunca se llega a alcanzar los 3000 ppm, valor muy lejano no solo del LEL (8000 ppm), sino también del 60% del LEL (4800 ppm).

Figura 3.1.3- a. Comportamiento de la dispersión de la nube inflamable de nafta en las zonas exteriores.


Sustancia: Nafta.

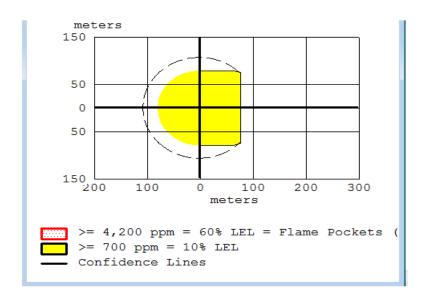
Mes: Junio.

Dirección del viento: Sur.

La nube inflamable obtenida para el caso de la nafta anteriormente no presenta zona roja, sin embargo estos escenarios se analizan para condiciones climatológicas bien definidas, los cambios en algunas de ellas como por ejemplo la dirección del viento, la velocidad del viento o la temperatura ambiente modificarían las áreas de dicho escenario. Así por ejemplo en la dirección sur y para el mes de Junio esta misma sustancia presenta en su escenario la peligrosa zona roja como se muestra en el grafico anterior, y la misma llega a alcanzar una distancia de 676 metros en la dirección del viento, con una concentración de la sustancia de 7800 ppm en el borde de esta área y con concentraciones superiores a 13000 ppm (LEL) a la izquierda de la frontera de la zona roja y amarilla por lo que es un área peligrosa al ser inflamable.

La zona amarilla alcanza una distancia de 1.6 kilómetros con una concentración de la nafta de 1300 ppm (60% LEL).

Figura 3.1.4-a. Comportamiento de la dispersión de la nube inflamable de la nafta en las zonas interiores y exteriores con respecto al tiempo a una distancia fija.


Fuente: Elaboración propia.

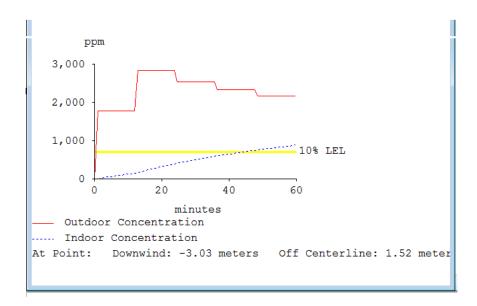
Sustancia: Nafta.

Como pude observarse en la figura anterior a 400 metros de la dirección del viento se alcanza una concentración equivalente al 10% del LEL en los locales interiores una vez transcurrido un tiempo de 10 minutos, posteriormente a los 60 minutos se alcanza una concentración que se corresponde al 60% del LEL y nunca se llega a alcanzar valores de concentración superiores a este.

La figura muestra también que en las zonas exteriores a partir de los 4 minutos se alcanza una concentración de 24400 ppm, muy superior a la concentración a la cual la nube se inflama, que es de 13000 ppm (LEL), de manera tal que resulta indiscutiblemente peligrosa.

En el caso de la sustancia diesel el software ALHOA no brinda áreas de la nube de diesel, esto se debe a que para las características químico-física de estas sustancias, la nube gaseosa que se forma no excede poco la longitud del charco o piscina que la origina, por eso en este caso el software solo brinda la longitud que alcanza la nube, el charco o piscina que para todos los meses el área y para todas las direcciones del viento es la misma, así el charco alcanza 200 metros, mientras que la nube solo alcanza 100 metros, esto debe interpretarse como que en esta nube de 100 metros, en su área aparece micro zonas diferentes, es decir amarillas y rojas indistintamente.

Figura 3.1.5. Comportamiento de la dispersión de la nube inflamable del turbo en las zonas exteriores.


Fuente: Elaboración propia.

Sustancia: Turbo.

Mes: Julio.

Dirección del viento: Oeste Sur Oeste.

En el caso de esta sustancia para ningún mes y para ninguna dirección del viento no aparece en la nube zonas rojas solo zonas amarillas para los diferentes meses en el caso que se pone como ejemplo para el mes de Julio se alcanzan 78 metros en la dirección del viento donde la sustancia tiene una concentración de sólo 700 ppm (10% del LEL), también en este caso muy inferior a los valores de concentración que representan un peligro para que la nube se inflame.

Figura 3.1.6. Comportamiento de la dispersión de la nube inflamable del turbo en las zonas interiores y exteriores con respecto a tiempo a una distancia fija.

Sustancia: Turbo.

En los locales interiores la nube alcanza la concentración correspondiente al 10% del LEL a los 43 minutos y en el exterior no llega a alcanzarse los 3000 ppm de concentración por lo que no existe peligro de que la nube se inflame.

El resto de las graficas de las nubes se encuentran en la base de datos del software ALHOA.

3.2 Dependencia del tamaño de las áreas de peligro con respecto a las condiciones climatológicas.

Resulta de interés para esta investigación precisar si se producen cambios en las áreas de peligro cuando cambian las condiciones climatológicas para las sustancias estudiadas, por lo que se obtuvo a partir de los gráficos obtenidos del Software ALOHA la siguiente tabla.

Condiciones	Menos extremas de temperatura y velocidad	Más extremas de temperatura y velocidad
Velocidad del viento	2.33 m/s	4.7m/s

Dirección del viento	WSW	ENE	
Humedad relativa	75%	81%	
Nubosidad	4	5	
Temperatura	26.12°C	31.43°C	
DIESEL	Distancia(m)	Distancia(m)	
Zona roja (60% LEL)	100	100	
Zona naranja			
Zona amarilla (10% LEL)	100	100	
NAFTA	Distancia(m)	Distancia(m)	
Zona roja (60% LEL)	63	No	
Zona naranja			
Zona amarilla (10% LEL)	281	282	
GASOLINA	Distancia(m)	Distancia(m)	
Zona roja (60% LEL)	1400	735	
Zona naranja			
Zona amarilla (10% LEL)	3000	1900	
TURBO	Distancia(m)	Distancia(m)	
Zona roja (60% LEL)	No	97	
Zona naranja			
Zona amarilla (10% LEL)	No	98	

Tabla 3.2.1. Dimensión del área total de la nube inflamable para las cuatros sustancias estudiadas, bajo las condiciones más extremas y menos extremas.

Los resultados de la tabla anterior nos permiten determinar que en el escenario de la nube inflamable se produce cambios en el largo de la zona de riesgo con respecto a los cambios de las variables del clima en el caso de la nafta, la gasolina y el turbo, no así en el caso de diesel. Para emitir esta afirmación se realizaron 182 gráficos por cada una de las sustancias, en función de 12 meses del año y las 16 direcciones del viento para 10 años de estudios climatológicos.

A continuación, se muestra un fragmento del anexo 1, como ejemplo del resumen de los resultados de la dispersión de las nubes inflamables para cada sustancia, que fueron obtenidos al elaborar 364 gráficos por el software ALOHA.

Temperatura(°C)		30.54						
Nubosidad		5	GASOLINA-JUNIO					
Humedad (%)		83	1					
Dirección del Viento	Vel Media del Viento (m/s)	Conc (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	3,47	Rojo 7,800 ppm = 60%	644	640	No	1600	1900	
	- , .	Naranja		T		1		
		Amarilla 1,300 ppm = 10%	1600	1040	10			
S	2,94	Rojo 7,800 ppm = 60%	699	880	No	1700	2460	
		Naranja				1		
		Amarilla 1,300 ppm = 10%	1700	1300	910			
SSW 2,78		Rojo 7,800 ppm = 60%	720	940	No	1700	2660	
		Naranja						
		Amarilla 1,300 ppm = 10%	1700	1400	910			
SW	2,42	Rojo 7,800 ppm = 60%	784	1140	No	1800	3300	
		Naranja						
		Amarilla 1,300 ppm = 10%	1800	1720	10			
WSW	2,33	Rojo 7,800 ppm = 60%	802	1180	No	1800	3380	
		Naranja						
		Amarilla 1,300 ppm = 10%	1800	1760	10			
W	2,75	Rojo 7,800 ppm = 60%	725	960	No	1700	2700	
		Naranja						
		Amarilla 1,300 ppm = 10%	1700	1420	10			
WNW	3,33	Rojo 7,800 ppm = 60%	660	720	No	1600	2040	
		Naranja				_		
		Amarilla 1,300 ppm = 10% LEL	1600	1100	10			

Tabla 3.2.2. Comportamiento de la dispersión de la nube inflamable de las diferentes sustancias analizadas para cada uno de los niveles que establece el software ALOHA según la EPA en el interior de los locales.

Fuente: Elaboración propia.

Como se observa en el mes de Junio para la gasolina bajo las condiciones climatológicas correspondientes se obtiene que en las direcciones mostradas es donde ocurre los mayores alcances de la nube inflamable que van desde 644 metros hasta 802 metros, para la zona roja y con respecto a la zona amarilla se alcanzan las mayores distancias que van desde 1600 hasta 1800 metros. Debe notarse que en este ejemplo que se muestra el largo de la zona de riesgo se

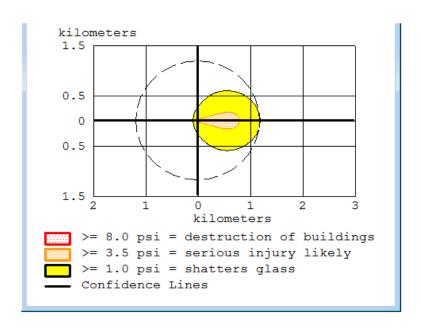
encuentra entre 1600 y 1800 metros. En la dirección oeste-sur-oeste la nube inflamable tiene un área de concentración mayor o igual que 7800 ppm (60% del LEL) en su borde exterior, tiene 802 metros de largo y 1180 metros de ancho. Para locales interiores se alcanza una concentración del contaminante que no excede el 10%. El área amarilla que posee una concentración de 1300 ppm, es igual a la concentración que corresponde al 10% del LEL, es de 1800 metros de largo y 1760 metros de ancho. Para locales interiores se alcanza una concentración del contaminante de 1300 ppm alrededor de los 10 minutos. En el resto de las tablas del anexo 1 se deben interpretar los datos de la misma forma.

En este trabajo fue posible determinar la dispersión de la nube inflamable de las diferentes sustancias para cada dirección del viento y para cada mes del año, atendiendo a los datos históricos de este parámetro climatológico.

Distancia	Distancia longitudinal alcanzada por la nube tóxica (m)					
	ENERO					
Dirección	NAFTA	TURBO	DIESEL	GASOLINA		
del viento						
N	92	90	100	1900		
NNE	223	89	100	1800		
NE	228	104	100	1800		
ENE	219	102	100	1700		
E	221	102	100	1800		
ESE	224	87	100	1800		
SE	231	88	100	1900		
SSE	233	88	100	1900		
S	219	85	100	2700		
SSW	218	85	100	2800		
SW	256	85	100	3000		
WSW	285		100	3000		
W	220	85	100	2800		
WNW	238	87	100	1900		
NW	233	87	100	1900		
NNW	232	86	100	1800		

Tabla 3.2.3
Resumen de comportamiento de la dispersión de la nube inflamable de las diferentes sustancias para cada rumbo en el mes de Enero.

Fuente: Elaboración propia.


En el ejemplo

anterior se nota claramente que la gasolina, la nafta, y el turbo tienen una variación, sin embargo en el diesel la distancia longitudinal alcanzada por la nube

se mantiene constante. Si se observa el resto de las tablas que aparecen en el anexo 5-a se nota que en los meses de Febrero y Marzo el turbo si varia para determinadas direcciones del viento, mientras que en otras se mantiene constante. Un análisis del resto de las tablas del anexo nos indica que para los meses de Enero, Octubre, Noviembre, Diciembre, la tendencia general del turbo es de mantenerse constante o de variar poco.

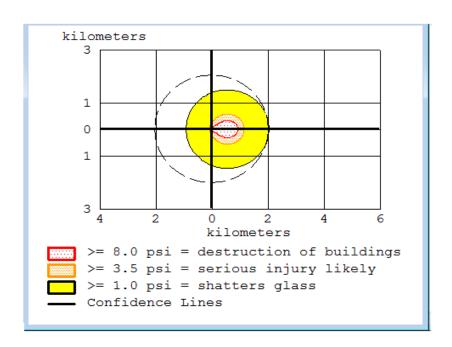
3.3 Estimación de las áreas peligrosas que surgen cuando se produce la explosión de una nube en presencia de una fuente de ignición común.

En las condiciones que se forma una piscina de la sustancia y a su vez una nube debido a la evaporación , la misma como ya se ha visto puede constituir un escenario conocido como nube inflamable cuyo resultados han sido mostrados, pero en dependencia de las características de la sustancia esta nube en vez de convertirse en una nube inflamable puede explotar, por lo que a continuación se muestran los resultados obtenidos en esta investigación para el escenario conocido como explosión de una nube. Se pudo determinar que solo la gasolina por sus características da origen al escenario conocido como explosión de una nube, no así el resto de las sustancias. Como puede verse en la siguiente figura la nube explosiva de gasolina posee solo dos zonas que son la naranja y la amarilla. Cuando se trata de una fuente de ignición común, en la primera zona se alcanza una presión de 3.5 psi y la onda expansiva que produce puede causar daños serios en cualquier estructura de construcción, mientras que aquellas edificaciones o construcciones de cualquier tipo que lleguen a encontrarse dentro del área amarilla, solo correrán el riesgo de sufrir daños de roturas de sus cristales. Puede observarse que el área más peligrosa alcanza algo más de medio kilómetro, mientras que el área menos peligrosa solo produce destrucción de los cristales, llega a una distancia un poco mayor que un kilómetro medido desde el punto virgen de explosión y en la dirección del viento.

Figura 3.3.1. Comportamiento de la dispersión de la nube explosiva de la gasolina en el mes de Diciembre para la dirección SW.

La tabla que acompaña a esta figura pretende ilustrar acerca de la dispersión de la nube de gasolina con más precisión en relación con las distancias que llegan a alcanzar las zonas peligrosas estudiadas, así por ejemplo se determina que en direcciones sur- oeste, oeste-sur-oeste y oeste, se alcanzan distancias tan considerables como 783 y 792 metros para la zona naranja y entre 1100 y 1200 metros para la zona roja, en las cuales aparecerían los daños que se describen en dicha tabla. Este ejemplo corresponde a un fragmento de los resultados para la gasolina en el mes de Diciembre, en el anexo 6 aparecen el resto de los resultados de este mes y de todo el año para diferentes sustancias, los cuales deben interpretarse de la misma manera que se ha hecho anteriormente.

A continuación se muestra un ejemplo para la gasolina en el mes de Diciembre.


Temperatura Nubosidad		26.54 4	GASOL	INA-DICIEMBRE
Humedad (9	%)	79		
Direcc. del Viento	Vel Media del Viento (m/s)	Conc (mg/m³) (ppm)	Largo (m)	Afectación de locales interiores
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	783	Serios daños

			Amarilla 1.0 psi	1200	Roturas cristales
WS'	W	2,33	Rojo 8.0 psi		
			Naranja 3.5 psi	792	Serios daños
			Amarilla 1.0 psi	1200	Roturas cristales
W		2,75	Rojo 8.0 psi		
			Naranja 3.5 psi	764	Serios daños
			Amarilla 1.0 psi	1100	Roturas cristales

Tabla 3.3.1. Fragmento de la tabla que muestra el alcance del área de una nube explosiva. Gasolina en el mes de Diciembre. Anexo 6.

3.4. Estimación de las áreas peligrosas que surgen cuando se produce la explosión de una nube en presencia de una fuente de ignición de un detonante de gran potencia.

El tipo de fuente de ignición tiene una influencia grande en la severidad de la explosión. Las explosiones accidentales son activadas más a menudo por las fuentes de ignición comunes, como las chispas, llamas, calor, y electricidad estática. Las explosiones accidentales generalmente son las explosiones de deflagración. Explosiones que se activan por la detonación (normalmente por un dispositivo explosivo de gran potencia), son explosiones de la detonación que son mucho más dañinas que las explosiones de deflagración. Se brinda por las opciones operativas del software ALOHA la posibilidad de modelar ambos tipos de ignición. Así una vez escogido los encendidos por chispa u opción de llama y modelados los escenarios por explosión accidental típica, ALOHA sugiere escoger los encendidos por la opción de la detonación y modelar una explosión intencional .Este es la variante del escenario cuyos resultados a continuación se muestran.

Figura 3.4.1. Comportamiento de la dispersión de la nube explosiva originada por un dispositivo de explosión de gran potencia para la gasolina en el mes de Diciembre en la dirección SW.

Como se puede observar no ocurre lo mismo para la nube cuando explota por la acción de un dispositivo de alta potencia, ya que en este caso a diferencia del anterior aparece la zona roja que es sin duda alguna de mayor peligro, esta zona llega a alcanzar, de acuerdo con el grafico, una distancia próxima a un kilómetro y llega a destruir instalaciones o edificaciones. De igual manera la zona naranja y amarilla son ahora más extensa que en el caso anteriormente estudiado y llegan a alcanzar distancias próximas a 1 kilómetro y 2 kilómetros respectivamente, como ya se sabe una causando serios daños a las construcciones y la otra a ventanas u otro tipo de cristales.

Temperatura(°C)		26.15			
Nubosidad		4	GASOLINA-DICIEMBRE		
Humedad (%	6)	78	GASOLITA	A-DICIEWIDKE	
Dirección	Vel	Conc	Largo (m)	Afectación	
del Viento	Media	(mg/m^3)		de locales interiores	
	del	(ppm)		de locales interiores	
	Viento				
	(m/s)				
SSW	2,78	Rojo 8.0 psi	893	Destrucción de	
		Naranja 3.5 psi	1100	Serios daños a las	
		Amarilla 1.0 psi	1900	Roturas de cristales	
SW	2,42	Rojo 8.0 psi	932	Destrucción de	
	,	Naranja 3.5 psi	1200	Serios daños a las	
		Amarilla 1.0 psi	2000	Roturas de cristales	
WSW	2,33	Rojo 8.0 psi	944	Destrucción de	
		Naranja 3.5 psi	1200	Serios daños a las	
		Amarilla 1.0 psi	2100	Roturas de cristales	

Tabla 3.4.2. Fragmento de la tabla que muestra el alcance del área de una nube explosiva. Gasolina en el mes de Diciembre. Anexo 7.

En el fragmento de la tabla anterior se muestra un ejemplo que precisa para cada dirección del viento las diferentes zonas que se origina su alcance y afectaciones para la gasolina en el mes de Diciembre, como se nota son distancias moderadas, pero no por ello sin importancia, pues los efectos que se resumen pueden dañar las instalaciones de la empresa y algunas que se encuentren cerca. Es importante también señalar que este software, no tiene en cuenta las consecuencias que cualquiera de estos tipos de evento peligrosos pueden desarrollar en otros tanques de almacenamiento de combustibles y por tanto se supone que los daños pudieran ser mayores y las pérdidas económicas también. El resto de los resultados aparecen en el anexo 7 y deben ser interpretados y analizados de igual manera.

CONCLUSIONES

- 1. La aplicación del software ALHOA permitió definir las zonas de peligro para los escenarios de nube inflamable y explosión de una nube en sus dos variantes de fuentes de ignición y sus consecuencias para la gasolina, la nafta, el diesel y el turbo combustible.
- 2. Mediante el software ALHOA se pudo determinar que la gasolina es la sustancia que para todos los escenarios estudiados resulta ser la más peligrosa por las áreas que se originan, los efectos que produce y el alcance de los mismos.
- 3. Se detecta la diferencia de comportamiento de la gasolina cuando se origina una explosión de su nube ante la presencia de fuentes de ignición común con respecto a la presencia de un dispositivo detonante de gran potencia.

RECOMENDACIONES

- 1. Caracterizar el resto de las sustancias químicas que se encuentra en la Empresa Comercializadora de Combustible de Matanzas, así como realizar un estudio de las áreas de atmósferas peligrosas que se pueden originar para estas sustancias ante accidentes.
- 2. Poner en conocimiento a la gerencia y los técnicos de esta empresa de los resultados de este trabajo para que sean considerados en su plan de protección y seguridad.

Bibliografía.

- Acosta, G. (2008) Evaluación de riesgos en la Empresa de Perforación y Extracción de Petróleo del Centro. Tesis en opción al título de Ingeniero Químico. Universidad de Matanzas Camilo Cienfuegos. Cuba.
- 2. Álvarez, J.1999.Ambiente y enfermedad. Científico técnica. La Habana, Cuba.
- 3. Almeida, M. 2007, *Toxicological*, Universidad de Matanzas, 2007, 'ALOHA 5.4.1', in, Office of Emergency Management, EPA and Emergency Response Division, NOAA.
- Badia, M. D. (2004). Manual de documentos de la Planta de Procesamiento de Crudo. Reglamentos tecnológicos., MINBAS, La Habana.
- Busto, R. 2007, Gestión de la prevención en riesgos laborales aplicada a Centrales Termoeléctricas, Publidisa, Madrid, España.
- 6. Casal, et al. (2001), Análisis del Riesgo en Instalaciones Industriales, Alfaomega S.A., Bogotá (Colombia), ISBN: 958-682-287-7.
- 7. Ceballos, C. L (2003). Preparación para la defensa, sustancias tóxicas su protección. Félix Varela. La Habana, Cuba.
- 8. Colectivo de autores. (1999). Evaluación de riesgos químicos. PNUMA/IPCS. ONU.
- 9. Correa, A. D (2004). Manual de Seguridad y Salud Ocupacional. Transportación segura de sustancias peligrosas., MINBAS, La Habana.
- 10. Covello, Merkhofe. (1993). *Risk Assessment Methods. Approaches for Assessing Health and Environmental Risks*, Plenum Prees, New York.
- 11. Duarte, G. 2009. SIAFASRL. *SIAFASRL*. [En línea] 2009. [Citado el: 2 de 1 de 2011.] http://natlaw.com/interam/ar/eg/rg/rgareg11.htm.
- 12. Doporto, L y col. (1953). Diccionario Enciclopédico U.T.E.H.A. Unión Tipográfica Editorial Hispano Americana. México .T. VIII. 12500 p.
- 13. Duffus, J.H, Worth, G.J. (1996). *Fundamental Toxicology for Chemists*. Royal Society of Chemistry, Londres.
- Encarta® 2006 [DVD]. Microsoft Corporation, 2005. Accidente."
 Microsoft®.

- 15. Faustman, E. &Omenn, G. (1996). 'Risk Assessment', in Casarett and Doull's Toxicology: The Basic Science of Poisons, McGraw-Hill, New York,pp. 75-88. Faustman, E. &Omenn, G. 1996, Risk Assessment, McGraw-Hill, New York.
- Galán, (2002). Manual del sistema de prevención de riesgos laborales,
 Xixona.
- 17. Grossman, E. 1985, Flexibilidad en procesos químicos., Reverte, México.
- 18. Helferich, W. & Winter, C. 2001, *Food toxicology*, CRC Press, Boca Ratón, FL USA.
- 19. IUPAC. (1993) Glossary for chemists of terms used in toxicology.
- 20. Irving, N. 2003, Dangerous properties of industrial materials.
- 21. Joaquín. (1999). Ambiente y enfermedad., Científico Técnico, La Habana.
- 22. Klaassen, C.D. (1996). Casarett and Doull's Toxicology: The Basic Science of Poisons.
- 23. Lama. A. (2010). Especialista en Higiene y Epidemiología. Consultas Personales. Provincia Salud. Matanzas.
- 24. Linares, O. G. (2001). Manual del sistema de prevención de riesgos laborales. Gestión y prevención de riesgos laborales en una industria ahorchatera. IX seminario de formación.
- 25. Manual de usuario del software ALOHA. (2007). Disponible en página Webde la facultad Química Mecánica. [On line]. www.figm.umcc.cu.
- 26. Martínez, N. (2009). Análisis de los riesgos industriales en la Empresa Comercializadora de Combustibles Matanzas. Tesis en opción al título de Ingeniero Químico. Universidad de Matanzas Camilo Cienfuegos. Cuba.
- 27. Mañas, J. L. (1991). Aprovechamiento de los Métodos de Análisis de Riesgos para mejorar la seguridad en industrias químicas y a fines. Ingeniería Química, pp. 213-221.
- 28. Méndez, B. B. (2004). Condiciones de Seguridad en la carga y descarga de camiones cisterna: líquidos inflamables. Centro Nacional de Condiciones de Trabajo.

- 29. Morales, Y. C (2004). Manual de procedimientos de Seguridad Industrial. Protección a las instalaciones., La Habana.
- 30. Moya B. (2010), Datos Meteorológicos. Instituto de Meteorología. CITMA. Matanzas. CUBA.
- 31. Muñoz, B. (1992). La Metodología de la Seguridad Industrial, Ministerio de Ciencia y Tecnología.
- 32. Muñoz, B. V. (1997). Prevención de Riesgos Implantación de un sistema efectivo de control del riesgo operacional en la empresa [on line].Marzo,2009Disponibleen:http://www.monografías.com/trabajos12/tipriesg/tripiesg.shtml.
- 33. NC 93 02 202. (1987). Requisitos higiénicos sanitarios. Concentraciones máximas admisibles, Altura mínima de expulsión y Zonas de Protección Sanitaria.
- 34. NC 74:2000. (2000). Prevención de los Riesgos Laborales. Reglas Generales para la Implantación de un Sistema de Gestión de la Seguridad y Salud en el Trabajo. Septiembre.
- 35. NC 19 01 03. (2003).SNPHT. Micro Clima Laboral. Requisitos higiénicos sanitarios. Métodos de medición.
- 36. NTP 108: (2008) Criterios toxicológicos generales para los contaminantes químicos. Riesgos químicos y biológicos Fundación Social Aplicada al Trabajo FUSAT. Buenos Aires Argentina [1-2-2008].
- 37. Orozco, J. L. (2007) .M.P. Almeida Galván, T. R. Rodríguez, P.R. Pérez Estévez, S. Díaz Suárez y L. Curiel Lorenzo. Incidencias atmosféricas de escapes en plantas químicas. Metodología de Evaluación aplicada a una planta de tratamiento de agua de una Central Térmica. Ingeniería Química. Barcelona. No 463. Octubre Año XL. Pág. 80-84.
- 38. Orozco, J. L. (2007) .Guía para proyecto de riesgo y seguridad industrial. [On line]. Disponible en http://www/fiqm.umcc.cu.
- 39. Perera. M. (2006). Estudio de la Calidad del Aire en el Puerto de Matanzas. Reporte Técnico. CITMA. Matanzas.
- 40. PNUMA/IPCS. (1999). Evaluación de riesgos químicos., Programa Nacional de las Naciones Unidas.
- 41. R.H., P. (1997), *Perry's Chemical Engineers Handbook*, McGraw-Hill, Inc. New York (USA).

- 42. Rios, M, G. (2009). Prevención de Riesgos por Agentes. [documento] madrid, españa: E.T.S.I.I., UNED, 2009. ISBN/ISSN.
- 43. Rodríguez, D. G. (2004). Manual de procedimientos de Seguridad Industrial. Protección a las instalaciones. Instrucción de seguridad para los riesgos eléctricos. MIMBAS, La Habana.
- 44. Rodríguez, T. 2006, Riesgos industriales en la empresa de generación eléctrica "Antonio Guiteras", Tesis de Grado (Ingeniería Química) tesis, Universidad de Matanzas.
- 45. Soriano (2010) .Especialista en Meteorología. Aeropuerto Internacional Juan G. Gómez de Varadero. Matanzas.
- 46. Tapanes,Y,M. (2010). Evaluación de atmósferas peligrosas en la Empresa comercialzadora de combustibles, Matanzas a partir de los possibles accidentes con productos tóxicos. Universidad de Matanzas Camilo Cienfuegos Cuba. Universidad de Matanzas, Cuba. : s.n., 2010. Tesis en opción al título de Ingeniero Químico.
- 47. Vílchez, J. et al. (1995). Lessons Learnt from emergencies alter accidents in Portugal and Spain involving dangerous chemical substances. Office for Official Publications of the European Community.
- 48. Wells, G. (1997). *Major Hazards and their Management*, Gulf Publishing Company, Houston, TX (USA), ISBN 0-85295-368-2.
- 49. Zagal, J. (1996). Memoria del simposio regional sobre preparativos para emergencias y desastres químicos. Disponible en Internet. [On line]. http://www.cepis.ops.oms.org/tutorial/fulltex/evaluación.html.2009.

Anexo. 1: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Enero, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.15					
Nubosidad		4		GA	ASOLINA-EN	IERO	
Humedad (9	%)	78					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3.47	Rojo 7,800 ppm = 60% LEL	785	840		1900	2040
		Naranja Amarilla 1,300 ppm = 10% LEL	1900	1220	10]	
S	2,94	Rojo 7,800 ppm = 60% LEL	1200	1340		2700	3260
	·	Naranja Amarilla 1,300 ppm = 10% LEL	2700	1840	1112]	
SSW	2,78	Rojo 7,800 ppm = 60% LEL	1200	1380		2800	3640
		Naranja Amarilla 1,300 ppm = 10% LEL	2800	2040	15	1	
SW	2,42	Rojo 7,800 ppm = 60% LEL	1300	1700		3000	4780
		Naranja Amarilla 1,300 ppm = 10% LEL	3000	2480	1617		
WSW	2,33	Rojo 7,800 ppm = 60% LEL	1400	1820		3000	5100
		Naranja Amarilla 1,300 ppm = 10% LEL	3000	2540	1718		
W	2,75	Rojo 7,800 ppm = 60% LEL	1200	1460		2800	3680
		Naranja Amarilla 1,300 ppm = 10% LEL	2800	2120	1718		
WNW	3,33	Rojo 7,800 ppm = 60% LEL	807	840		1900	2160
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1900	1340	10		

Anexo. 1-a: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Febrero, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	26.12					
Nubosidad		4		GAS	SOLINA-FEB	RERO	
Humedad (%	%)	75					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3.47	Rojo 7,800 ppm = 60% LEL	604	600		1500	1780
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1500	940	67		
S	2,94	Rojo 7,800 ppm = 60% LEL	603	760		1500	2380
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1500	1180	67		
SSW	2,78	Rojo 7,800 ppm = 60% LEL	618	840	No	1500	2640
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1500	1280	5		
SW	2,42	Rojo 7,800 ppm = 60% LEL	675	1020		1600	3160
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1600	1480	910		
WSW	2,33	Rojo 7,800 ppm = 60% LEL	691	1060		1600	3320
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1600	1580	910	1	
W	2,75	Rojo 7,800 ppm = 60% LEL	618	860		1500	2680
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	1500	1280	68	1	
WNW	3,33	Rojo 7,800 ppm = 60% LEL	612	620		1500	1920
	_	Naranja				1	
		Amarilla 1,300 ppm = 10% LEL	1500	1000	78		

Anexo. 1-b: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Marzo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	28.2							
Nubosidad		4	1	GA	ASOLINA-MA	ARZO			
Humedad (9		74							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3.47	Rojo 7,800 ppm = 60% LEL	816	880		2000	2100		
		Naranja Amarilla 1,300 ppm = 10% LEL	2000	1300	78	_			
S	2,94	Rojo 7,800 ppm = 60% LEL	1200	1360		2800	3380		
		Naranja Amarilla 1,300 ppm = 10% LEL	2800	2020	15	1			
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja	1300	1440		2900	3840		
		Amarilla 1,300 ppm = 10% LEL	2900	2180	1617	1			
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja	1400	1720		3100	4980		
WSW	2,33	Amarilla 1,300 ppm = 10% LEL Rojo 7,800 ppm = 60% LEL	3100 1400	2560 1840	1516	3100	5320		
		Naranja Amarilla 1,300 ppm = 10% LEL	3100	2700	1617				
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	2900	1520 2200	1516	2900	3900		
WNW	3,33	Rojo 7,800 ppm = 60% LEL	1100	1660	1010	2400	5360		
		Naranja Amarilla 1,300 ppm = 10% LEL	2400	2500	15				

Anexo. 1-c: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Abril, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.71					
Nubosidad		3		G	ASOLINA-AI	3RIL	
Humedad (%)	73					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL	527	940	5758	1200	2640
		Naranja Amarilla 1,300 ppm = 10% LEL	1200	1360	20	1	
S	2,94	Rojo 7,800 ppm = 60% LEL	603	1180	5758	1300	3020
		Naranja Amarilla 1,300 ppm = 10% LEL	1300	1720	20	1	
SSW	2,78	Rojo 7,800 ppm = 60% LEL	400	780	50	872	2040
		Naranja Amarilla 1,300 ppm = 10% LEL	872	1120	19	1	
SW	2,42	Rojo 7,800 ppm = 60% LEL	698	1560		1500	3640
		Naranja Amarilla 1,300 ppm = 10% LEL	1500	2320	2930	1	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Narania	714	1680		1500	3760
		Amarilla 1,300 ppm = 10% LEL	1500	2440	30	1	
W	2,75	Rojo 7,800 ppm = 60% LEL Narania	640	1340	5859	1400	3260
		Amarilla 1,300 ppm = 10% LEL	1400	7960	20	1	
WNW	3,33	Rojo 7,800 ppm = 60% LEL	552	960	5152	1200	2700
		Naranja				_	
		Amarilla 1,300 ppm = 10% LEL	1200	1460	20		

Anexo. 1-d: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Mayo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.94	CASOLINA MAYO						
Nubosidad		4	1	G	ASOLINA-M	AYO			
Humedad (77							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL	532	900	48	1200	2640		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1200	1340	20				
S	2,94	Rojo 7,800 ppm = 60% LEL	608	1180	60	1300	3020		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1300	1760	2223				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	636	1300		1400	3220		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1400	1920	23				
SW	2,42	Rojo 7,800 ppm = 60% LEL	706	1640		1500	3720		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1500	2360	30				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	726	1640		1600	3800		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1600	2440	2627				
W	2,75	Rojo 7,800 ppm = 60% LEL	642	1300	5859	1400	3180		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1400	1920	22				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	554	1000	60	1200	2760		
		Naranja							
		Amarilla 1,300 ppm = 10% LEL	1200	1420	20	1			

Anexo. 1-e: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Junio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.54							
Nubosidad		5		G	ASOLINA-JU	JNIO			
Humedad (%)	83							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	644 1600	640	10	1600	1900		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	699	1040 880 1300	910	1700	2460		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	720	940	910	1700	2660		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	784 1800	1140	10	1800	3300		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	802	1180	10	1800	3380		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	725	960	10	1700	2700		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1600	720	10	1600	2040		

Anexo. 1-f: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Julio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.43						
Nubosidad		5	1	G	ASOLINA-JU	JLIO		
Humedad (9		81	Tana Anala A Catalin Tana Anala					
Dirección del Viento	Vel. Media	Conc. (mg/m ³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona	
der viento	del	(ppm)	(111)		interiores.	Riesgo	Riesgo	
	Viento (m/s)				(minutos)	(m)	(m)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL	648	780		1600	2220	
		Naranja Amarilla 1,300 ppm = 10% LEL	1600	1180	10	-		
S	2,94	Rojo 7,800 ppm = 60% LEL	698	840	'Ŭ	1700	2460	
		Naranja Amarilla 1,300 ppm = 10% LEL	1700	1340	10	-		
SSW	2,78	Rojo 7,800 ppm = 60% LEL	718	880	10	1700	2640	
		Naranja Amarilla 1,300 ppm = 10% LEL	4700	4000	10	-		
SW	2,42	Rojo 7,800 ppm = 60% LEL	1700 781	1360 1180	10	1800	3300	
		Naranja 100/ LEV			4.0			
*******	2.22	Amarilla 1,300 ppm = 10% LEL	1800	1720	10	1000	0.400	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja	804	1180		1800	3420	
		Amarilla 1,300 ppm = 10% LEL	1800	1760	10			
W	2,75	Rojo 7,800 ppm = 60% LEL	721	960		1700	2660	
		Naranja Amarilla 1,300 ppm = 10% LEL	1700	1420	10	1		
WNW	3,33	Rojo 7,800 ppm = 60% LEL	656	700		1600	2040	
		Naranja Amarilla 1,300 ppm = 10% LEL	1600	1100	10	-		

Anexo. 1-g: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Agosto, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.3					
Nubosidad	•	5	1	GA	SOLINA-AG	OSTO	
Humedad (%)	82	1				
Dirección del Viento	Vel. Media del Viento	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
225	(m/s)			0.10		000	1000
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	376 966	340 600	5657 10	966	1080
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja	418	460	5859	1000	1440
		Amarilla 1,300 ppm = 10% LEL	1000	720	1112		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1100	480 800	5657 1112	1100	1600
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	733	1100	10	1700	3380
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja	498	660	60	1200	2100
W	2,75	Amarilla 1,300 ppm = 10% LEL Rojo 7,800 ppm = 60% LEL Naranja	1200 676	900	1314	1600	2880
WNW	3,33	Amarilla 1,300 ppm = 10% LEL Rojo 7,800 ppm = 60% LEL	1600 386	1400 360	78 5859	986	1160
		Naranja Amarilla 1,300 ppm = 10% LEL	986	620	1112	-	

Anexo. 1-h: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Septiembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.82					
Nubosidad		5		GASC	DLINA-SEPT	IEMBRE	
Humedad (%)	84	1				
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	371 955	340 580	1415	955	1080
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	413	460 720	1516	1000	1400
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	428	460 800	1516	1100	1560
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	476	700	60	1100	1960
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	491	660	60	1200	2100
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	431	460	60	1100	1560
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	381	380	60	974	1160

Anexo. 1-i: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Octubre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.54					
Nubosidad		4		GAS	SOLINA-OCT	UBRE	
Humedad (9	%)	84					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	2300	1520 2300	30	2300	5160
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1200	1940 2960	35	2600	5940
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1200	2200 3260	40	2700	6280
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1300	2620 4080	3940	3000	7100
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1400 3100	2700	4344	3100	7420
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1200	2280	40	2800	6440
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1100	1580 2420	3435	2400	5340

Anexo. 1-j tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Noviembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	27.32							
Nubosidad		5		GAS	OLINA-NOVI	EMBRE			
Humedad (9	%)	81							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1519	900	4748	1200	2580		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1594	1180	60	1300	2940		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	620	1300	5859	1400	3140		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	677	1520	60	1500	3520		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	695 1500	1600	No 2627	1500	3680		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	625	1220	No 2728	1400	3100		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	539	1000	60	1200	2660		

Anexo. 1-k: tabla que muestra el alcance del área de una nube inflamable. Gasolina en el mes de Diciembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.54	CASOLINA DICIEMBRE					
Nubosidad		4	4	GAS	OLINA-DICII	EMBRE		
Humedad (9		79						
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja	1000	1580		2300	5100	
		Amarilla 1,300 ppm = 10% LEL	2300	2300	30	1		
S	2,94	Rojo 7,800 ppm = 60% LEL	1200	2000		2600	5940	
		Naranja Amarilla 1,300 ppm = 10% LEL	2600	2960	3435	1		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja	1200	2040		2700	6200	
		Amarilla 1,300 ppm = 10% LEL	2700	3260	3536			
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	3000	3920	40	3000	7100	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	1400 3100	2700 4160	4142	3100	7340	
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja	1200	2200		2700	6360	
WNW	3,33	Amarilla 1,300 ppm = 10% LEL Rojo 7,800 ppm = 60% LEL	2700 1100	3260 1640	3637	2400	5280	
	- ,	Naranja Amarilla 1,300 ppm = 10% LEL	2400	2420	3637	1		

Anexo. 2: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Enero, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.15							
Nubosidad		4		N	IAFTA ENE	RO			
Humedad (%)	78							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Ancho Zona Riesgo (m)			
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	233	163		233	248		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	219	163		219	314		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	218	159		218	334		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	60	159	2627	256	436		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	64	164	30	285	492		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	220	163		220	338		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	238	164		238	264		

Anexo. 2a: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Febrero, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.12						
Nubosidad		4	_	N/	AFTAFEBR	ERO		
Humedad (9		75						
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	3,03	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	328	188		328	161	
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	132 505	172 270	1718	505	532	
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	140 519	175 288	16—17	519	584	
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	161	192	1617	553	784	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	167	192	910	562	844	
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	142 522	175	17	522	592	
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	55 335	153	2122	335	336	

Anexo. 2b: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Marzo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	28.2					
Nubosidad		4		1	NAFTAMAR	RZO	
Humedad (9	%)	74					
Dirección del Viento	Vel. Media	Conc. (mg/m³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona
	del Viento (m/s)	(ppm)			interiores. (minutos)	Riesgo (m)	Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja	57	153		344	340
		Amarilla 1,300 ppm = 10% LEL	344	200	2223		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	139 523	175 284	1617	523	552
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja	148	188	1017	536	612
		Amarilla 1,300 ppm = 10% LEL	536	304	1718	1	
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	169 568	208 352	1516	568	810
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	174 576	197 372	1617	576	878
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	149	184		539	638
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja	539 59	304 157	1617	347	354
		Amarilla 1,300 ppm = 10% LEL	347	212	2223	1	

Anexo. 2c: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Abril, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.71					
Nubosidad		3	_		NAFTAABF	RIL	
Humedad (9		73					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	93	157		93	224
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	93	154		93	222
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	93	154		93	224
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	229	151		229	342
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	235	159		235	368
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	93	157		93	224
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	93	157		93	222

Anexo. 2d tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Mayo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.94							
Nubosidad		4			NAFTAMA	YO			
Humedad (%)	77	<u> </u>						
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	336	187		336	342		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	323	184		323	456		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	328	157	23	328	490		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	79	163	2324	341	297		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	82 346	163	2223	346	620		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	66	157 194	23	332	510		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	51	155	2223	345	360		

Anexo. 2e: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Junio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.54							
Nubosidad		5			NAFTAJUN	IIO			
Humedad (%)	83	<u> </u>						
Dirección del Viento	Vel. Media del Viento	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
	(m/s)								
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	260	163		260	294		
S	2,94	Rojo 7,800 ppm = 60% LEL	676	840		1600	2700		
	,	Naranja Amarilla 1,300 ppm = 10% LEL	1600	1280	10				
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	320	184		320	472		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	74 332	163	2324	332	576		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78 336	155 204	2223	336	596		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	322	184		322	488		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	335	179		335	356		

Anexo. 2f: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Julio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.43					
Nubosidad		5			NAFTAJUI	_IO	
Humedad (%)	81					
Dirección del Viento	Ve.l Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	278	183		278	330
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	294	200		294	400
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	299	206		299	430
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	314	230		314	510
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	317	224		317	540
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	299	206		299	426
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	278	187		278	338

Anexo. 2g: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Agosto, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.3					
Nubosidad		5		N	AFTAAGO	STO	
Humedad (9	%)	82					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	331	179		331	352
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	316	184		316	452
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	316	179		316	452
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	75	157	2526	333	588
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	155	25	335	620
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	319	194		319	482
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	328	183		328	360

Anexo. 2h: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de septiembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.82							
Nubosidad		5		NAF	TASEPTIE	MBRE			
Humedad (%)	84							
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	321	183		321	346		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	309	189		309	394		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	319	200		319	426		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	236	155		236	376		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	81	151	2324	343	558		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	226	147		226	310		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	208	130		208	246		

Anexo. 2i: tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Octubre, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	29.54					
Nubosidad		4		N.A	FTAOCTU	JBRE	
Humedad (%	%)	84					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL	72	157		124	278
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	124	157	15—16		
S	2,94	Rojo 7,800 ppm = 60% LEL	76	155		134	298
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	134	151	1011		
SSW	2,78	Rojo 7,800 ppm = 60% LEL	76	159		131	290
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	131	155	1011		
SW	2,42	Rojo 7,800 ppm = 60% LEL	77	155		142	310
		Naranja				_	
		Amarilla 1,300 ppm = 10% LEL	142	159	10		
WSW	2,33	Rojo 7,800 ppm = 60% LEL	277	500		584	1360
		Naranja				_	
	_	Amarilla 1,300 ppm = 10% LEL	584	720	1819		
W	2,75	Rojo 7,800 ppm = 60% LEL	77	159		139	314
		Naranja			ļ.,	1	
	2.22	Amarilla 1,300 ppm = 10% LEL	139	159	1011	105	22.1
WNW	3,33	Rojo 7,800 ppm = 60% LEL	73	157		125	284
		Naranja 100/ LEL	40-		05.00	4	
		Amarilla 1,300 ppm = 10% LEL	125	157	2526		

Anexo. 2j tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Noviembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	27.32							
Nubosidad		5		NA	FTANOVIE	MBRE			
Humedad (9	%)	81	ļ						
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)		
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	157		88	216		
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	154		88	216		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	154		88	216		
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	89	154		89	218		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	154		88	218		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	154		88	216		
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	88	154		88	216		

Anexo. 2k tabla que muestra el alcance del área de una nube inflamable. Nafta en el mes de Diciembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.54					
Nubosidad		4		NA	FTADICIEN	/IBRE	
Humedad (%)	79					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja	71	154		119	276
	204	Amarilla 1,300 ppm = 10% LEL	119	157	16—17	100	200
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	75 126	155 157	11—12	126	286
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	75	154	11—12	124	278
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	124 76	157 155 159	10—11	130	290
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77 133	155 159	10	133	298
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	76 129	155 159	11—12	129	286
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	72	154 157	1314	120	272

Anexo. 3: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Enero, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		26.15						
Nubosidad		4		D	IESEL ENE	ERO .		
Humedad (%)	78						
Dirección del Viento	Vel. Media del Viento	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja	100					
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100			_		
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja	100					
SW	2,42	Amarilla 1,300 ppm = 10% LEL Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100 100 100			-		
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100			-		
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100			-		

Anexo. 3 a: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Febrero, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		26.12						
Nubosidad		4		DIE	ESEL FEBF	RERO		
Humedad (%		75						
Dirección del Viento	Vel. Media	Conc. (mg/m ³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona	
dei viento	del	(mg/m) (ppm)	(111)	(111)	interiores.	Riesgo	Riesgo	
	Viento	(ppin)				_	(m)	
	(m/s)				(minutos)	(m)	(111)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SW	2,42	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
W	2,75	Rojo 7,800 ppm = 60% LEL	100					
		Naranja]		
		Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			1		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					

Anexo. 3b: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Marzo, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		28.2					
Nubosidad		4		D	IESELMAF	RZO	
Humedad (9		74					
Dirección del Viento	Vel. Media	Conc. (mg/m³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona
	del Viento (m/s)	(ppm)			interiores. (minutos)	Riesgo (m)	Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100				
		Naranja Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
	,-	Naranja Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
55 11	2,70	Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100			-	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja	100				
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja	100				
		Amarilla 1,300 ppm = 10% LEL	100			1	
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 3C tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Abril, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		29.71						
Nubosidad		3	DIESELABRIL					
Humedad (%	%)	73						
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho	
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona	
	del	(ppm)			interiores.	Riesgo	Riesgo	
	Viento				(minutos)	(m)	(m)	
	(m/s)							
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SW	2,42	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
W	2,75	Rojo 7,800 ppm = 60% LEL	100					
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			1		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					

Anexo. 3d: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Mayo, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	30.94						
Nubosidad		4			DIESELMA	YO		
Humedad (%	%)	77						
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho	
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona	
	del	(ppm)			interiores.	Riesgo	Riesgo	
	Viento				(minutos)	(m)	(m)	
	(m/s)						, ,	
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SW	2,42	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
W	2,75	Rojo 7,800 ppm = 60% LEL	100					
		Naranja]		
		Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			1		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					

Anexo. 3e: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Junio, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		30.54						
Nubosidad		5		J	DIESELJUN	IIO		
Humedad (9	%)	83						
Dirección del Viento	Vel. Media	Conc. (mg/m³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona	
	del Viento	(ppm)		()	interiores. (minutos)	Riesgo (m)	Riesgo (m)	
	(m/s)					(111)	(111)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100					
		Naranja Amarilla 1,300 ppm = 10% LEL	100					
SW	2,42	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
W	2,75	Rojo 7,800 ppm = 60% LEL	100					
		Naranja 100/ LEL	100					
11/2/11/	2.22	Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			-		
		Naranja Amarilla 1,300 ppm = 10% LEL	100					
		Amarma 1,300 ppm – 10% LEL	100					

Anexo. 3f: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Julio, en las direcciones de mayor extensión de la nube inflamable.

Temperatura (°C)		31.43						
Nubosidad		5	DIESELJULIO					
Humedad (9		81						
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho	
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona	
	del	(ppm)			interiores.	Riesgo	Riesgo	
	Viento				(minutos)	(m)	(m)	
	(m/s)							
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
S	2,94	Rojo 7,800 ppm = 60% LEL	100					
		Naranja						
		Amarilla 1,300 ppm = 10% LEL	100					
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100					
		Naranja]		
		Amarilla 1,300 ppm = 10% LEL	100					
SW	2,42	Rojo 7,800 ppm = 60% LEL	100					
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100]		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					
W	2,75	Rojo 7,800 ppm = 60% LEL	100			1		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			1		
		Naranja				1		
		Amarilla 1,300 ppm = 10% LEL	100					

Anexo. 3g: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Agosto, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.3					
Nubosidad		5		DI	ESELAGO	STO	
Humedad (9	%)	82					
Dirección del Viento	Vel. Media	Conc. (mg/m³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona
dei viento	del	(ppm)	(111)	(111)	interiores.	Riesgo	Riesgo
	Viento (m/s)				(minutos)	(m)	(m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 3h: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Septiembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.82					
Nubosidad		5		DIES	SELSEPTIE	MBRE	
Humedad (84					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 3i: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Octubre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.54					
Nubosidad		4		DIE	ESELOCTU	JBRE	
Humedad (%	<u>%)</u>	84					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100			1	
		Naranja				1	
		Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 3j: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Noviembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	27.32					
Nubosidad		5		DIES	SELNOVIE	MBRE	
Humedad (%	%)	81					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL	100			1	
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	100				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100]	
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 3k: tabla que muestra el alcance del área de una nube inflamable. Diesel en el mes de Diciembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	26.54					
Nubosidad		4	DIESELDICIEMBRE				
Humedad (%	%)	79					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3,47	Rojo 7,800 ppm = 60% LEL	100]	
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	100				
S	2,94	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SSW	2,78	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
SW	2,42	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WSW	2,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
W	2,75	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				
WNW	3,33	Rojo 7,800 ppm = 60% LEL	100				
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	100				

Anexo. 4: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Enero, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.15					
Nubosidad		4		Т	URBO ENE	RO	
Humedad (%	%)	78					
Dirección del Viento	Vel. Media	Conc. (mg/m³)	Largo (m)	Ancho (m)	Afectación Locales	Largo Zona	Ancho Zona
der viente	del	(ppm)	(111)		interiores.	Riesgo	Riesgo
	Viento (m/s)				(minutos)	(m)	(m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja				88	191
		Amarilla 1,300 ppm = 10% LEL	88	157		1	
S	2,94	Rojo 7,800 ppm = 60% LEL				85	208
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	85	157			
SSW	2,78	Rojo 7,800 ppm = 60% LEL				85	210
		Naranja Amarilla 1,300 ppm = 10% LEL	85	154		-	
SW	2,42	Rojo 7,800 ppm = 60% LEL				85	216
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	85	157			
WSW	2,33	Rojo 7,800 ppm = 60% LEL				_	
		Naranja Amarilla 1,300 ppm = 10% LEL				-	
W	2,75	Rojo 7,800 ppm = 60% LEL				85	210
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	85	157			
WNW	3,33	Rojo 7,800 ppm = 60% LEL				87	197
		Naranja				_	
		Amarilla 1,300 ppm = 10% LEL	87	157			

Anexo. 4 a: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Febrero, en las direcciones de mayor extensión de la nube inflamable.

Temperatura	a (°C)	26.12					
Nubosidad		4		TU	IRBOFEBR	ERO	
Humedad (%	%)	75					
Dirección	Vel.	Conc.	Largo	Ancho	Afectación	Largo	Ancho
del Viento	Media	(mg/m^3)	(m)	(m)	Locales	Zona	Zona
	del	(ppm)			interiores.	Riesgo	Riesgo
	Viento				(minutos)	(m)	(m)
	(m/s)						
SSE	3,47	Rojo 7,800 ppm = 60% LEL				91	184
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	91	156			
S	2,94	Rojo 7,800 ppm = 60% LEL				125	204
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	125	159			
SSW	2,78	Rojo 7,800 ppm = 60% LEL				128	216
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	128	155			
SW	2,42	Rojo 7,800 ppm = 60% LEL				142	248
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	142	158			
WSW	2,33	Rojo 7,800 ppm = 60% LEL				151	266
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	151	156			
W	2,75	Rojo 7,800 ppm = 60% LEL				129	216
		Naranja					
		Amarilla 1,300 ppm = 10% LEL	129	158			
WNW	3,33	Rojo 7,800 ppm = 60% LEL				92	187
		Naranja]	
		Amarilla 1,300 ppm = 10% LEL	92	156			

Anexo. 4b: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Marzo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	28.2					
Nubosidad		4		Т	URBO MAF	RZO	
Humedad (9	%)	74			,		
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	101	156		101	187
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	156		77	216
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	156		77	218
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	158		77	212
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	156		77	214
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	156		77	216
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	156		77	214

Anexo. 4c: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Abril, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.71					
Nubosidad		3		٦	TURBO AB	RIL	
Humedad (73					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL					
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212

Anexo. 4d: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Mayo, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.94					
Nubosidad		4		-	TURBO MA	YO	
Humedad (9		77					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	100	154		100	197
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	101	154		101	206
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	99	154		99	212
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	99	157		99	222
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	99	154		99	228
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	99	157		99	210
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	98	154		98	197

Anexo. 4e: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Junio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.54					
Nubosidad		5		7	TURBO JUI	OIV	
Humedad (9	%)	83					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	66	154		66	204
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	64	160		64	200
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	65	160		65	200
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	67	160		67	200
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	68	160		68	204
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	65	160		65	200
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	62	157		62	200

Anexo. 4f: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Julio, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.43					
Nubosidad		5			TURBOJUL	_IO	
Humedad (9	%)	81			,		
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	60	157		60	197
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	63	157		63	200
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	160		78	216
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	160		78	216
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	160		78	216
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	160		78	216
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	160		77	216

Anexo. 4g: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Agosto, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	31.3					
Nubosidad		5		TU	JRBO AGO	STO	
Humedad (9		82					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		. 78	212
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		78	212
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		78	212
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		78	212
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212

Anexo. 4h: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Septiembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	30.82						
Nubosidad		5		TUR	BO SEPTIE	MBRE		
Humedad (%)		84						
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212	
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212	
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212	
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		78	212	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	78	157		78	212	
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		. 77	212	
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212	

Anexo. 4i: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Octubre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	29.54					
Nubosidad		4	1	TU	RBO OCTU	JBRE	
Humedad (84					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212

Anexo. 4j: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Noviembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	27.32					
Nubosidad		5		TUF	RBO NOVIE	MBRE	
Humedad (9	%)	81					
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)
SSE	3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		. 77	212

Anexo. 4k: tabla que muestra el alcance del área de una nube inflamable. Turbo en el mes de Diciembre, en las direcciones de mayor extensión de la nube inflamable.

Temperatur	a (°C)	26.54						
Nubosidad	· ·	4		TUI	RBO DICIE	MBRE		
Humedad (%)	79						
Dirección del Viento	Vel. Media del Viento	Conc. (mg/m³) (ppm)	Largo (m)	Ancho (m)	Afectación Locales interiores. (minutos)	Largo Zona Riesgo (m)	Ancho Zona Riesgo (m)	
SSE	(m/s) 3,47	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	77	157		77	212	
S	2,94	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	71	157		71	204	
SSW	2,78	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	71	157		71	204	
SW	2,42	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	72	157		72	204	
WSW	2,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	73	157		73	204	
W	2,75	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	71	157		71	204	
WNW	3,33	Rojo 7,800 ppm = 60% LEL Naranja Amarilla 1,300 ppm = 10% LEL	70	157		70	206	

Nota: La base de datos del software ALHOA contiene el resto de los resultados de este trabajo para las demás direcciones del viento para las diferentes sustancias .Debe interpretarse los espacios en blanco como que no aparecen las áreas para esas condiciones, según el software ALHOA.

Anexo. 5: Tablas que muestra la distancia alcanzada por la nube inflamable para la concentración máxima admisible en los diferentes meses del año.

ENERO									
Distancia I	Distancia longitudinal alcanzada por la nube tóxica								
		(m)							
Dirección									
del	NAFTA	TURBO	DIESEL	GASOLINA					
viento									
N	92	90	100	1900					
NNE	223	89	100	1800					
NE	228	104	100	1800					
ENE	219	102	100	1700					
E	221	102	100	1800					
ESE	224	87	100	1800					
SE	231	88	100	1900					
SSE	233	88	100	1900					
S	219	85	100	2700					
SSW	218	85	100	2800					
SW	256	85	100	3000					
WSW	285		100	3000					
W	220	85	100	2800					
WNW	238	87	100	1900					
NW	233	87	100	1900					
NNW	232	86	100	1800					

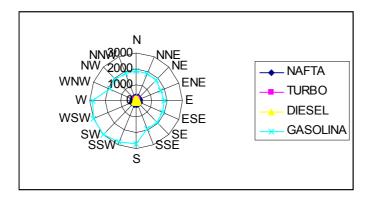
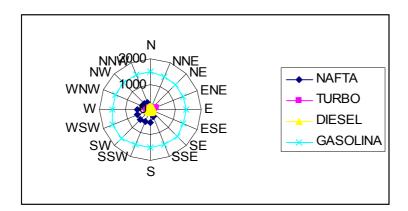



Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para el mes de Enero.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: W, WSW, SW, SSW, y S.

FEBRERO									
Distancia lo	Distancia longitudinal alcanzada por la nube tóxica (m)								
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA					
N	105	91	100	1500					
NNE	106	90	100	1400					
NE	102	90	100	1400					
ENE	102	218	100	1400					
E	102	89	100	1400					
ESE	101	90	100	1400					
SE	101	91	100	1500					
SSE	328	91	100	1500					
S	505	125	100	1500					
SSW	519	128	100	1500					
SW	553	142	100	1600					
WSW	562	151	100	1600					
W	522	129	100	1500					
WNW	335	92	100	1500					
NW	328	91	100	1500					
NNW	320	91	100	1500					

Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Febrero.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: WSW, SW, pero en el resto la diferencia es de 100metros o 200metros más en dependencia de las direcciones del viento.

	MARZO								
Distancia longitudinal alcanzada por la nube									
	t	óxica (m)							
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA					
N	344	101	100	2000					
NNE	321	98	100	1900					
NE	333	98	100	1900					
ENE	308	96	100	1800					
E	318	97	100	1900					
ESE	327	98	100	1900					
SE	340	100	100	2000					
SSE	344	101	100	2000					
S	523	77	100	2800					
SSW	536	77	100	2900					
SW	568	77	100	3100					
WSW	576	77	100	3100					
W	539	77	100	2900					
WNW	347	77	100	2400					
NW	344	77	100	2300					
NNW	333	77	100	1600					

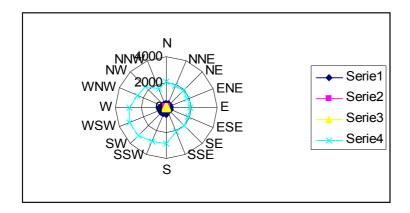


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Marzo.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: W, WSW, SW, SSW, y S nuevamente.

	ABRIL								
Distancia Ion	Distancia longitudinal alcanzada por la nube tóxica (m)								
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA					
N	92	77	100	2300					
NNE	98	77	100	2100					
NE	98	77	100	2000					
ENE	98	77	100	1900					
E	98	77	100	2000					
ESE	98	77	100	2100					
SE	93	77	100	1200					
SSE	93	77	100	1200					
S	93	77	100	1300					
SSW	93	77	100	872					
SW	229	77	100	1500					
WSW	235	77	100	1500					
W	93		100	1400					
WNW	93	77	100	1200					
NW	94	77	100	1200					
NNW	95	77	100	1100					

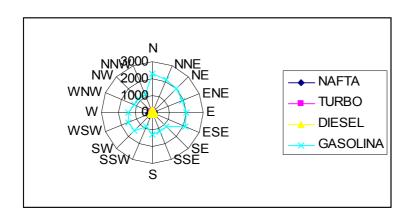


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Marzo.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: N, NNE, NE, ENE, E, ESE.

MAYO								
Distancia longitudinal alcanzada por la nube tóxica (m)								
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA				
N	330	98	100	1200				
NNE	319	98	100	1200				
NE	318	98	100	1200				
ENE	310	107	100	1100				
E	318	99	100	1100				
ESE	325	99	100	1200				
SE	334	100	100	1200				
SSE	336	100	100	1200				
S	323	101	100	1300				
SSW	328	99	100	1400				
SW	341	99	100	1500				
WSW	346	99	100	1600				
W	332	99	100	1400				
WNW	345	98	100	1200				
NW	343	98	100	1200				
NNW	340	97	100	1100				

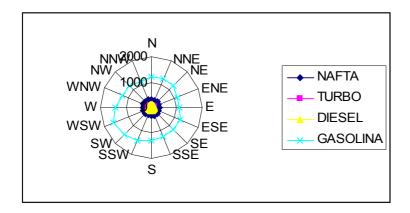


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Mayo.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: S, SSW, SW, WSW.

	JUNIO								
Distancia longitudinal alcanzada por la nube tóxica (m)									
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA					
N	324	62	100	1600					
NNE	312	62	100	1500					
NE	312	62	100	1500					
ENE	304	60	100	1500					
E	311	61	100	1500					
ESE	317	65	100	1600					
SE	288	61	100	1600					
SSE	260	66	100	1600					
S	1600	64	100	1700					
SSW	320	65	100	1700					
SW	332	67	100	1800					
WSW	336	68	100	1800					
W	322	65	100	1700					
WNW	335	62	100	1600					
NW	310	60	100	1600					
NNW	328	65	100	1600					

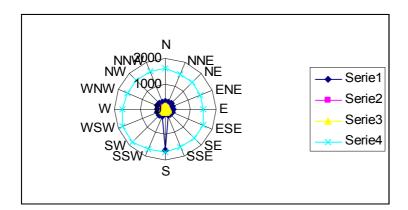


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Junio.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SSW, SW, WSW, W.

JULIO								
Distancia longitudinal alcanzada por la nube tóxica (m)								
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA				
N	282	78	100	1600				
NNE	268	77	100	1600				
NE	265	77	100	1500				
ENE	256	77	100	1500				
E	262	77	100	1500				
ESE	268	62	100	1600				
SE	277	77	100	1600				
SSE	278	60	100	1600				
S	294	63	100	1700				
SSW	299	78	100	1700				
SW	314	78	100	1800				
WSW	317	78	100	1800				
W	299	78	100	1700				
WNW	278	77	100	1600				
NW	274	78	100	1600				
NNW	267	78	100	1600				

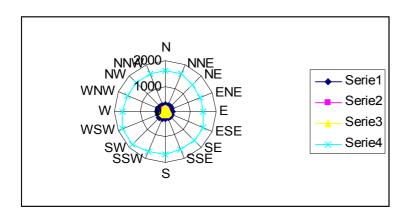


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Julio.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SSW, SW, WSW, W.

AGOSTO							
Distancia lor	Distancia longitudinal alcanzada por la nube tóxica (m)						
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA			
N	208	77	100	966			
NNE	196	77	100	895			
NE	195	77	100	885			
ENE	186	77	100	839			
E	287	77	100	875			
ESE	198	77	100	907			
SE	303	77	100	959			
SSE	331	77	100	966			
S	316	77	100	1000			
SSW	316	78	100	1100			
SW	333	78	100	1700			
WSW	335	78	100	1200			
W	319	78	100	1600			
WNW	328	77	100	986			
NW	300	77	100	1500			
NNW	299	77	100	934			

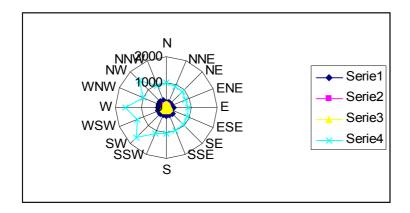


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Agosto.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SW, W, NW.

SEPTIEMBRE					
Distancia lo	ngitudinal	alcanzada	oor la nube	tóxica (m)	
Dirección del viento	NAFTA	TURBO	DIESEL	GASOLINA	
N	205	77	100	955	
NNE	193	77	100	884	
NE	192	77	100	875	
ENE	183	77	100	829	
E	302	77	100	867	
ESE	307	77	100	896	
SE	316	77	100	947	
SSE	321	77	100	955	
S	309	77	100	1000	
SSW	319	77	100	1100	
SW	236	78	100	1100	
WSW	343	78	100	1200	
W	226	77	100	1100	
WNW	208	77	100	974	
NW	205	77	100	955	
NNW	200	77	100	924	

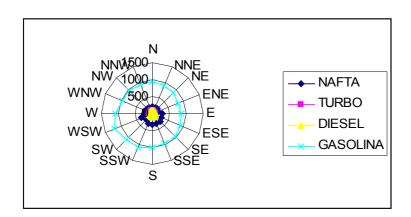


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Septiembre.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SSW, SW, WSW, W.

OCTUBRE								
Distancia lo	Distancia longitudinal alcanzada por la nube tóxica (m)							
	NAFTA TURBO DIESEL GASOLINA							
N	124	68	100	1200				
NNE	122	66	100	1100				
NE	122	65	100	1100				
ENE	121	63	100	1100				
E	124	65	100	1100				
ESE	122	66	100	1200				
SE	124	67	100	2300				
SSE	124	77	100	2300				
S	134	77	100	2600				
SSW	131	77	100	2700				
SW	142	77	100	3000				
WSW	584	77	100	3100				
W	139	77	100	2800				
WNW	125	77	100	2400				
NW	124	68	100	2300				
NNW	123	67	100	2200				

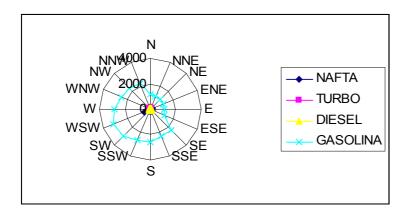


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Octubre.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SE, SSE, S, SSW, SW, WSW, W.

NOVIEMBRE									
Distancia loi	Distancia longitudinal alcanzada por la nube tóxica (m)								
	NAFTA TURBO DIESEL GASOLÍN								
N	89	77	100	1200					
NNE	91	76	100	1100					
NE	91	76	100	1100					
ENE	91	76	100	1100					
E	91	77	100	1100					
ESE	91	77	100	1200					
SE	89	77	100	1200					
SSE	88	77	100	1200					
S	88	77	100	1300					
SSW	88	77	100	1400					
SW	89	77	100	1500					
WSW	88	77	100	1500					
W	88	77	100	1400					
WNW	88	77	100	1200					
NW	88	77	100	1200					
NNW	89	77	100	1100					

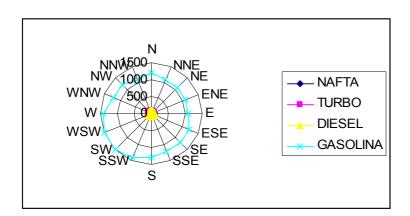


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Octubre.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: SSW, SW, WSW, W.

DICIEMBRE									
Distancia lo	Distancia longitudinal alcanzada por la nube tóxica (m)								
	NAFTA TURBO DIESEL GASOLII								
N	119	77	100	2300					
NNE	118	76	100	2100					
NE	117	76	100	2000					
ENE	116	75	100	1900					
E	120	76	100	2000					
ESE	118	76	100	2100					
SE	119	77	100	2300					
SSE	119	77	100	2300					
S	126	71	100	2600					
SSW	124	71	100	2700					
SW	130	72	100	3000					
WSW	133	73	100	3100					
W	129	71	100	2700					
WNW	120	70	100	2400					
NW	119	77	100	2300					
NNW	118	77	100	1200					

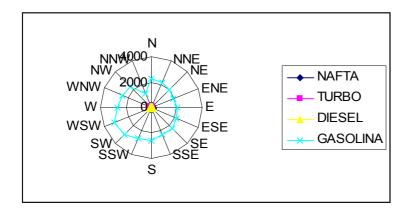


Gráfico correspondiente a la tabla que muestra la distancia alcanzada por la nube inflamable para cada rumbo en el mes de Diciembre.

Debe notarse que para la gasolina se alcanzan las mayores distancias en las direcciones: S, SSW, SW, WSW, W.

Anexo. 6: tabla que muestra el alcance del área de una nube explosiva en presencia de una fuente de ignición común. Gasolina en los meses del año.

Temperatura	a(°C)	26.15		
Nubosidad		4	GASOLINA	-ENERO
Humedad (%	6)	78		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	(mg/m^3)		de locales
	Viento	(ppm)		interiores
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	791	Serios daños
		Amarilla 1.0 psi	791	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	383	Serios daños
		Amarilla 1.0 psi	686	Roturas cristales
NE	4,17	Rojo 8.0 psi		
		Naranja 3.5 psi	677	Serios daños
		Amarilla 1.0 psi	677	Roturas cristales
ENE	4,69	Rojo 8.0 psi		1
		Naranja 3.5 psi	342	Serios daños
		Amarilla 1.0 psi	623	Roturas cristales
E	4,26	Rojo 8.0 psi	ļ	1
		Naranja 3.5 psi	371	Serios daños
EGE	2.05	Amarilla 1.0 psi	668	Roturas cristales
ESE	3,97	Rojo 8.0 psi		0
		Naranja 3.5 psi	393	Serios daños
ar.	2.52	Amarilla 1.0 psi	700	Roturas cristales
SE	3,53	Rojo 8.0 psi	101	Carias da as
		Naranja 3.5 psi	464	Serios daños
CCE	2.02	Amarilla 1.0 psi	781	Roturas cristales
SSE	3,03	Rojo 8.0 psi	470	Serios daños
		Naranja 3.5 psi	791	Roturas cristales
S	2,94	Amarilla 1.0 psi Rojo 8.0 psi	191	Noturas cristales
3	2,94	Naranja 3.5 psi	670	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
SSW	2,78	Rojo 8.0 psi	1100	Trotardo oriotareo
35 **	2,70	Naranja 3.5 psi	693	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
SW	2,42	Rojo 8.0 psi	1100	
	_,	Naranja 3.5 psi	747	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
WSW	2,33	Rojo 8.0 psi	.=	
	Ź	Naranja 3.5 psi	759	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	697	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	485	Serios daños
		Amarilla 1.0 psi	812	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	470	Serios daños
		Amarilla 1.0 psi	791	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	446	Serios daños
		Amarilla 1.0 psi	756	Roturas cristales

Temperatura(°C)	26.12	GASOLINA-FEBRERO	
Nubosidad	4		
Humedad (%)	75		
Dirección Vel.	Conc.	Largo (m)	Afectación

del Viento	Media del	(mg/m ³)		de locales interiores
	Viento	(ppm)		
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	343	Serios daños
		Amarilla 1.0 psi	653	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	303	Serios daños
		Amarilla 1.0 psi	589	Roturas cristales
NE	4,17	Rojo 8.0 psi		
		Naranja 3.5 psi	298	Serios daños
		Amarilla 1.0 psi	582	Roturas cristales
ENE	4,69	Rojo 8.0 psi		
		Naranja 3.5 psi	270	Serios daños
		Amarilla 1.0 psi	539	Roturas cristales
Е	4,26	Rojo 8.0 psi		
		Naranja 3.5 psi	292	Serios daños
		Amarilla 1.0 psi	573	Roturas cristales
ESE	3,97	Rojo 8.0 psi		
		Naranja 3.5 psi	309	Serios daños
		Amarilla 1.0 psi	598	Roturas cristales
SE	3,53	Rojo 8.0 psi		
	'	Naranja 3.5 psi	337	Serios daños
		Amarilla 1.0 psi	642	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	340	Serios daños
		Amarilla 1.0 psi	647	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	386	Serios daños
		Amarilla 1.0 psi	695	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	398	Serios daños
		Amarilla 1.0 psi	712	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	440	Serios daños
		Amarilla 1.0 psi	774	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	451	Serios daños
		Amarilla 1.0 psi	791	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	398	Serios daños
		Amarilla 1.0 psi	712	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	350	Serios daños
		Amarilla 1.0 psi	659	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	337	Serios daños
		Amarilla 1.0 psi	639	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
	'	Naranja 3.5 psi	320	Serios daños
		Amarilla 1.0 psi	615	Roturas cristales

Temperatura(°C)	28.2	
Nubosidad	4	GASOLINA-MARZO
Humedad (%)	74	

Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	(mg/m^3)	Largo (III)	de locales
der vielle	Viento	(ppm)		interiores
	(m/s)	(PP)		
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	488	Serios daños
		Amarilla 1.0 psi	819	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	404	Serios daños
		Amarilla 1.0 psi	719	Roturas cristales
NE	4,17	Rojo 8.0 psi		
		Naranja 3.5 psi	398	Serios daños
	1.60	Amarilla 1.0 psi	711	Roturas cristales
ENE	4,69	Rojo 8.0 psi	_	
		Naranja 3.5 psi	369	Serios daños
-	126	Amarilla 1.0 psi	673	Roturas cristales
E	4,26	Rojo 8.0 psi	000	0
		Naranja 3.5 psi	392	Serios daños
EGE	2.07	Amarilla 1.0 psi	701	Roturas cristales
ESE	3,97	Rojo 8.0 psi	4.47	Carias daãos
		Naranja 3.5 psi	447	Serios daños
OE.	2.52	Amarilla 1.0 psi	759	Roturas cristales
SE	3,53	Rojo 8.0 psi	400	Corios doãos
		Naranja 3.5 psi	483	Serios daños
CCE	2.02	Amarilla 1.0 psi	811	Roturas cristales
SSE	3,03	Rojo 8.0 psi	400	Serios daños
		Naranja 3.5 psi	488	Roturas cristales
S	2,94	Amarilla 1.0 psi	819	Roluids cristales
5	2,94	Rojo 8.0 psi	600	Serios daños
		Naranja 3.5 psi Amarilla 1.0 psi	690 1100	Roturas cristales
SSW	2,78	Rojo 8.0 psi	1100	TOturas cristales
33 W	2,70	Naranja 3.5 psi	710	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
SW	2,42	Rojo 8.0 psi	1100	Trotaras cristales
5 W	2,42	Naranja 3.5 psi	758	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
WSW	2,33	Rojo 8.0 psi	1200	T total all directal de
*****	2,33	Naranja 3.5 psi	843	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
W	2,75	Rojo 8.0 psi	1200	
••	2,75	Naranja 3.5 psi	713	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
WNW	3,33	Rojo 8.0 psi	1	
	- ,	Naranja 3.5 psi	738	Serios daños
		Amarilla 1.0 psi	1000	Roturas cristales
NW	3,47	Rojo 8.0 psi		
	1	Naranja 3.5 psi	733	Serios daños
	<u> </u>	Amarilla 1.0 psi	981	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
	1	Naranja 3.5 psi	516	Serios daños
		Amarilla 1.0 psi	659	Roturas cristales
Temperatur	a(°C)	29.71		
Nubosidad		3	GASOLINA	-ABRIL
Humedad (9		73		_
Dirección	Ve.l	Conc.	Largo (m)	Afectación
del Viento	Media del	(mg/m^3)	- ` ` ´	de locales
	Viento	(ppm)		interiores
	(m/s)		1	
	(111/3)			
N	3,47	Rojo 8.0 psi		

		Amarilla 1.0 psi	989	Roturas cristales
NNE	4,08	Rojo 8.0 psi	1000	
11112	1,00	Naranja 3.5 psi	720	Serios daños
		Amarilla 1.0 psi	882	Roturas cristales
NE	4,17	Rojo 8.0 psi	1002	
1112	',''	Naranja 3.5 psi	715	Serios daños
		Amarilla 1.0 psi	870	Roturas cristales
ENE	4,69	Rojo 8.0 psi	1070	1.010.00 0.1010.00
LIL	1,00	Naranja 3.5 psi	795	Serios daños
		Amarilla 1.0 psi	795	Roturas cristales
Е	4,26	Rojo 8.0 psi	100	
L	1,20	Naranja 3.5 psi	698	Serios daños
		Amarilla 1.0 psi	852	Roturas cristales
ESE	3,97	Rojo 8.0 psi	002	T total ao onotaloo
LUL	3,77	Naranja 3.5 psi	725	Serios daños
		Amarilla 1.0 psi	902	Roturas cristales
SE	3,53	Rojo 8.0 psi	302	T total ao onotaloo
SL	3,33	Naranja 3.5 psi	439	Serios daños
		Amarilla 1.0 psi	624	Roturas cristales
SSE	3,03	Rojo 8.0 psi	024	Ttotalas cristales
SSE	3,03	Naranja 3.5 psi	445	Serios daños
		Amarilla 1.0 psi	634	Roturas cristales
S	2,94	Rojo 8.0 psi	034	Trotalas cristales
5	2,74	Naranja 3.5 psi	498	Serios daños
		Amarilla 1.0 psi	713	Roturas cristales
SSW	2,78	Rojo 8.0 psi	113	Trotarao criotareo
33 W	2,76	Naranja 3.5 psi	334	Serios daños
		Amarilla 1.0 psi	488	Roturas cristales
SW	2,42	Rojo 8.0 psi	400	Trotarao criotareo
5 **	2,42	Naranja 3.5 psi	524	Serios daños
		Amarilla 1.0 psi	809	Roturas cristales
WSW	2,33	Rojo 8.0 psi	1 009	T (Otarao oriotareo
WBW	2,33	Naranja 3.5 psi	528	Serios daños
		Amarilla 1.0 psi	826	Roturas cristales
W	2,75	Rojo 8.0 psi	020	T total ao onotaloo
**	2,73	Naranja 3.5 psi	510	Serios daños
		Amarilla 1.0 psi	752	Roturas cristales
WNW	3,33	Rojo 8.0 psi	132	T total ao onotaloo
*****	3,33	Naranja 3.5 psi	468	Serios daños
		Amarilla 1.0 psi	660	Roturas cristales
NW	3,47	Rojo 8.0 psi	1000	. total ac crictatos
1111] 5, 17	Naranja 3.5 psi	448	Serios daños
		Amarilla 1.0 psi	638	Roturas cristales
NNW	3,72	Rojo 8.0 psi	1000	
1 11 1 11	3,72	Naranja 3.5 psi	421	Serios daños
		Amarilla 1.0 psi	600	Roturas cristales
		TATIONIA 1.0 psi	1 000	1 total do oriotales

Temperatura	a(°C)	30.94		
Nubosidad		4	GASOLINA-MAYO	
Humedad (%	%)	77		
Dirección	Vel.	Conc.	Largo (m) Afectación	
del Viento	Media del	(mg/m^3)	de locales	
	Viento	(ppm)	interiores	
	(m/s)			
		Rojo 8.0 psi		

N	3,47	Naranja 3.5 psi	450	Serios daños
	-,	Amarilla 1.0 psi	640	Roturas cristales
NNE	4,08	Rojo 8.0 psi	1010	
''''	1,00	Naranja 3.5 psi	425	Serios daños
		Amarilla 1.0 psi	593	Roturas cristales
NE	4,17	Rojo 8.0 psi	1 333	T total as official so
l IVL	7,17	Naranja 3.5 psi	417	Serios daños
		Amarilla 1.0 psi	584	Roturas cristales
ENE	4,69	Rojo 8.0 psi	304	Troturas cristales
LINE	4,09	Naranja 3.5 psi	358	Serios daños
		Amarilla 1.0 psi		Roturas cristales
Е	4,26	Rojo 8.0 psi	496	TOturas cristales
E	4,20		412	Serios daños
		Naranja 3.5 psi		Roturas cristales
EGE	2.07	Amarilla 1.0 psi	568	Rollias Cristales
ESE	3,97	Rojo 8.0 psi	426	Sorios daños
		Naranja 3.5 psi	436	Serios daños Roturas cristales
CE.	2.52	Amarilla 1.0 psi	606	Roluras cristales
SE	3,53	Rojo 8.0 psi	111	Carias da as
		Naranja 3.5 psi	444	Serios daños
CCE	2.02	Amarilla 1.0 psi	629	Roturas cristales
SSE	3,03	Rojo 8.0 psi	110	0
		Naranja 3.5 psi	449	Serios daños
	204	Amarilla 1.0 psi	638	Roturas cristales
S	2,94	Rojo 8.0 psi	 	0
		Naranja 3.5 psi	502	Serios daños
CONT	2.50	Amarilla 1.0 psi	718	Roturas cristales
SSW	2,78	Rojo 8.0 psi		0
		Naranja 3.5 psi	510	Serios daños
~~~		Amarilla 1.0 psi	748	Roturas cristales
SW	2,42	Rojo 8.0 psi	+	
		Naranja 3.5 psi	530	Serios daños
		Amarilla 1.0 psi	817	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	535	Serios daños
		Amarilla 1.0 psi	837	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	512	Serios daños
		Amarilla 1.0 psi	754	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	470	Serios daños
		Amarilla 1.0 psi	662	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	450	Serios daños
		Amarilla 1.0 psi	639	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	422	Serios daños
		Amarilla 1.0 psi	602	Roturas cristales

Temperatura	a(°C)	30.54		
Nubosidad		5	GASOLINA-JUNIO	
Humedad (%)		83		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales interiores
	Viento	(ppm)		
	(m/s)			

N	3,47	Rojo 8.0 psi		
14	] 3,47	Naranja 3.5 psi	336	Serios daños
		Amarilla 1.0 psi	687	Roturas cristales
NNE	4,08	Rojo 8.0 psi	1007	Trotardo onotaros
ININE	14,08	Naranja 3.5 psi	335	Serios daños
		Amarilla 1.0 psi	638	Roturas cristales
NE	4,17	Rojo 8.0 psi	036	Totalas cristales
NE	4,17		221	Serios daños
		Naranja 3.5 psi	331	Roturas cristales
ENE	4.60	Amarilla 1.0 psi	631	Roturas Cristales
ENE	4,69	Rojo 8.0 psi	205	Serios daños
		Naranja 3.5 psi	305	
Б	1.26	Amarilla 1.0 psi	592	Roturas cristales
E	4,26	Rojo 8.0 psi	004	0
		Naranja 3.5 psi	324	Serios daños
		Amarilla 1.0 psi	622	Roturas cristales
ESE	3,97	Rojo 8.0 psi	1000	Oprior de Tour
		Naranja 3.5 psi	339	Serios daños
ar.	12.52	Amarilla 1.0 psi	645	Roturas cristales
SE	3,53	Rojo 8.0 psi		
		Naranja 3.5 psi	364	Serios daños
		Amarilla 1.0 psi	683	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	367	Serios daños
		Amarilla 1.0 psi	689	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	441	Serios daños
		Amarilla 1.0 psi	774	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	457	Serios daños
		Amarilla 1.0 psi	796	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	552	Serios daños
		Amarilla 1.0 psi	862	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	570	Serios daños
		Amarilla 1.0 psi	880	Roturas cristales
W	2,75	Rojo 8.0 psi		
	'	Naranja 3.5 psi	461	Serios daños
		Amarilla 1.0 psi	802	Roturas cristales
WNW	3,33	Rojo 8.0 psi	""	
, • •	-,55	Naranja 3.5 psi	378	Serios daños
		Amarilla 1.0 psi	705	Roturas cristales
NW	3,47	Rojo 8.0 psi	1,00	
-111	5,17	Naranja 3.5 psi	368	Serios daños
		Amarilla 1.0 psi	691	Roturas cristales
NNW	3,72	Rojo 8.0 psi	1091	i totarao oriotaroo
T MT M AA	3,72	Naranja 3.5 psi	354	Serios daños
		Amarilla 1.0 psi		Roturas cristales
		i Amama 1.0 psi	668	Noturas Cristaics

Temperatura(°C)		31.43		
Nubosidad		5	GASOLINA-JULIO	
Humedad (%)		81		
Dirección del Viento	Vel. Media del Viento (m/s)	Conc. (mg/m³) (ppm)	Largo (m)	Afectación de locales interiores
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	371	Serios daños
		Amarilla 1.0 psi	695	Roturas cristales
		Rojo 8.0 psi		

NNE	4,08	Naranja 3.5 psi	378	Serios daños
		Amarilla 1.0 psi	644	Roturas cristales
NE	4,17	Rojo 8.0 psi		
		Naranja 3.5 psi	376	Serios daños
		Amarilla 1.0 psi	640	Roturas cristales
ENE	4,69	Rojo 8.0 psi		
	′	Naranja 3.5 psi	311	Serios daños
		Amarilla 1.0 psi	602	Roturas cristales
Е	4,26	Rojo 8.0 psi		
		Naranja 3.5 psi	327	Serios daños
		Amarilla 1.0 psi	627	Roturas cristales
ESE	3,97	Rojo 8.0 psi	· _ ·	
	′	Naranja 3.5 psi	343	Serios daños
		Amarilla 1.0 psi	651	Roturas cristales
SE	3,53	Rojo 8.0 psi	1	
	-,	Naranja 3.5 psi	366	Serios daños
		Amarilla 1.0 psi	786	Roturas cristales
SSE	3,03	Rojo 8.0 psi	1.00	
	-,	Naranja 3.5 psi	371	Serios daños
		Amarilla 1.0 psi	694	Roturas cristales
S	2,94	Rojo 8.0 psi	1	
-	'-	Naranja 3.5 psi	469	Serios daños
		Amarilla 1.0 psi	773	Roturas cristales
SSW	2,78	Rojo 8.0 psi	1	
	,	Naranja 3.5 psi	478	Serios daños
		Amarilla 1.0 psi	794	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	539	Serios daños
		Amarilla 1.0 psi	860	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	537	Serios daños
		Amarilla 1.0 psi	882	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	487	Serios daños
		Amarilla 1.0 psi	797	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	440	Serios daños
		Amarilla 1.0 psi	701	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	435	Serios daños
		Amarilla 1.0 psi	689	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	354	Serios daños
		Amarilla 1.0 psi	668	Roturas cristales

Temperatura(°C)		31.3		
Nubosidad		5	GASOLINA-AGOSTO	
Humedad (%)		82	1	
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales
	Viento	(ppm)		interiores
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	278	Serios daños
		Amarilla 1.0 psi	415	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	242	Serios daños
		Amarilla 1.0 psi	371	Roturas cristales
NE	4,17	Rojo 8.0 psi		
		Naranja 3.5 psi	239	Serios daños

		Amarilla 1.0 psi	365	Roturas cristales
ENE	4,69	Rojo 8.0 psi		
		Naranja 3.5 psi	225	Serios daños
		Amarilla 1.0 psi	337	Roturas cristales
Е	4,26	Rojo 8.0 psi		
		Naranja 3.5 psi	232	Serios daños
		Amarilla 1.0 psi	360	Roturas cristales
ESE	3,97	Rojo 8.0 psi		
		Naranja 3.5 psi	249	Serios daños
		Amarilla 1.0 psi	378	Roturas cristales
SE	3,53	Rojo 8.0 psi		
		Naranja 3.5 psi	276	Serios daños
		Amarilla 1.0 psi	461	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	278	Serios daños
		Amarilla 1.0 psi	415	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	320	Serios daños
		Amarilla 1.0 psi	463	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	331	Serios daños
		Amarilla 1.0 psi	480	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	524	Serios daños
		Amarilla 1.0 psi	832	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	389	Serios daños
		Amarilla 1.0 psi	567	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	473	Serios daños
		Amarilla 1.0 psi	771	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	288	Serios daños
		Amarilla 1.0 psi	426	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	350	Serios daños
		Amarilla 1.0 psi	667	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	262	Serios daños
		Amarilla 1.0 psi	395	Roturas cristales

Temperatur	a(°C)	30.82		
Nubosidad		5	GASOLINA-SEPTIEMBR	
Humedad (9	<b>%</b> )	84		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales
	Viento	(ppm)		interiores
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	275	Serios daños
		Amarilla 1.0 psi	409	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	240	Serios daños
		Amarilla 1.0 psi	366	Roturas cristales
		Rojo 8.0 psi		

NE	4,17	Naranja 3.5 psi	232	Serios daños
•	,	Amarilla 1.0 psi	362	Roturas cristales
ENE	4,69	Rojo 8.0 psi		
	,	Naranja 3.5 psi	209	Serios daños
		Amarilla 1.0 psi	331	Roturas cristales
Е	4,26	Rojo 8.0 psi		
	'	Naranja 3.5 psi	231	Serios daños
		Amarilla 1.0 psi	354	Roturas cristales
ESE	3,97	Rojo 8.0 psi		
		Naranja 3.5 psi	244	Serios daños
		Amarilla 1.0 psi	375	Roturas cristales
SE	3,53	Rojo 8.0 psi		
		Naranja 3.5 psi	274	Serios daños
		Amarilla 1.0 psi	405	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	275	Serios daños
		Amarilla 1.0 psi	409	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	312	Serios daños
		Amarilla 1.0 psi	457	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	258	Serios daños
		Amarilla 1.0 psi	390	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	377	Serios daños
		Amarilla 1.0 psi	544	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	384	Serios daños
		Amarilla 1.0 psi	560	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	329	Serios daños
		Amarilla 1.0 psi	477	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	283	Serios daños
		Amarilla 1.0 psi	421	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	275	Serios daños
		Amarilla 1.0 psi	409	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	258	Serios daños
		Amarilla 1.0 psi	390	Roturas cristales

Temperatura	a(°C)	29.54		
Nubosidad		4	GASOLINA-OCTUBRE	
Humedad (%	<b>6</b> )	84		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales interiores
	Viento	(ppm)		
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	441	Serios daños
		Amarilla 1.0 psi	627	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	416	Serios daños
		Amarilla 1.0 psi	583	Roturas cristales

NE	4,17	Poio 8 0 poi	1	1
INE	4,1/	Rojo 8.0 psi Naranja 3.5 psi	408	Serios daños
		Amarilla 1.0 psi	573	Roturas cristales
ENE	4,69	Rojo 8.0 psi	373	Trotalas cristaics
LINE	4,09	Naranja 3.5 psi	350	Serios daños
		Amarilla 1.0 psi	485	Roturas cristales
E	4,26	Rojo 8.0 psi	400	Trotalas cristales
L	4,20	Naranja 3.5 psi	401	Serios daños
		Amarilla 1.0 psi	563	Roturas cristales
ESE	3,97	Rojo 8.0 psi	303	Trotalas cristaics
ESE	3,97	Naranja 3.5 psi	430	Serios daños
		Amarilla 1.0 psi	596	Roturas cristales
SE	3,53	Rojo 8.0 psi	390	Trotalas cristales
SE	3,33	Naranja 3.5 psi	732	Serios daños
		Amarilla 1.0 psi	972	Roturas cristales
SSE	3,03	Rojo 8.0 psi	912	Trotulas cristaics
SSE	3,03	Naranja 3.5 psi	734	Serios daños
		Amarilla 1.0 psi	983	Roturas cristales
S	2,94		903	TOtulas cristales
S	4,94	Rojo 8.0 psi	756	Serios daños
		Naranja 3.5 psi Amarilla 1.0 psi	756 1100	Roturas cristales
CCW	2.70		1100	TOtulas cristales
SSW	2,78	Rojo 8.0 psi	764	Serios daños
		Naranja 3.5 psi	764	Roturas cristales
CW	2.42	Amarilla 1.0 psi	1100	Rollias cristales
SW	2,42	Rojo 8.0 psi	700	Corios doños
		Naranja 3.5 psi	786	Serios daños
WCW	2.22	Amarilla 1.0 psi	1200	Roturas cristales
WSW	2,33	Rojo 8.0 psi	704	Corios doños
		Naranja 3.5 psi	794	Serios daños
***	2.75	Amarilla 1.0 psi	1200	Roturas cristales
W	2,75	Rojo 8.0 psi	700	Corios doños
		Naranja 3.5 psi	766	Serios daños
33731337	2.22	Amarilla 1.0 psi	1100	Roturas cristales
WNW	3,33	Rojo 8.0 psi	700	Corios doños
		Naranja 3.5 psi	739	Serios daños
3.1117	2.47	Amarilla 1.0 psi	1000	Roturas cristales
NW	3,47	Rojo 8.0 psi	70.4	0
		Naranja 3.5 psi	734	Serios daños
3 3 3 3 3 3	2.52	Amarilla 1.0 psi	983	Roturas cristales
NNW	3,72	Rojo 8.0 psi	707	0
		Naranja 3.5 psi	727	Serios daños
	(0.5)	Amarilla 1.0 psi	938	Roturas cristales
Temperatur	a(°C)	27.32		
Nubosidad	2//	5	GASOLINA-NOVIEMBI	
Humedad (		81		1.0
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales interiores
	Viento	(ppm)		
	(m/s)			
N	3,47	Rojo 8.0 psi		1
		Naranja 3.5 psi	441	Serios daños
		Amarilla 1.0 psi	627	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	416	Serios daños
		Amarilla 1.0 psi	582	Roturas cristales
NE	4,17	Rojo 8.0 psi		
	1	Naranja 3.5 psi	408	Serios daños
				1
		Amarilla 1.0 psi	573	Roturas cristales
ENE	4,69		573	Roturas cristales
ENE	4,69	Amarilla 1.0 psi	349	Roturas cristales  Serios daños  Roturas cristales

Е	4,26	Rojo 8.0 psi		
	-,	Naranja 3.5 psi	399	Serios daños
		Amarilla 1.0 psi	562	Roturas cristales
ESE	3,97	Rojo 8.0 psi	1	
	<b>1</b>	Naranja 3.5 psi	430	Serios daños
		Amarilla 1.0 psi	595	Roturas cristales
SE	3,53	Rojo 8.0 psi		
		Naranja 3.5 psi	434	Serios daños
		Amarilla 1.0 psi	616	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	440	Serios daños
		Amarilla 1.0 psi	626	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	494	Serios daños
		Amarilla 1.0 psi	704	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	500	Serios daños
		Amarilla 1.0 psi	733	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	513	Serios daños
		Amarilla 1.0 psi	789	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	514	Serios daños
		Amarilla 1.0 psi	800	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	501	Serios daños
		Amarilla 1.0 psi	738	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	457	Serios daños
		Amarilla 1.0 psi	647	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	439	Serios daños
		Amarilla 1.0 psi	625	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	410	Serios daños
		Amarilla 1.0 psi	589	Roturas cristales

Temperatura	a(°C)	26.54		
Nubosidad		4	GASOLINA-DICIEMBRE	
Humedad (%	<b>%</b> )	79		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales interiores
	Viento	(ppm)		
	(m/s)			
N	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	732	Serios daños
		Amarilla 1.0 psi	980	Roturas cristales
NNE	4,08	Rojo 8.0 psi		
		Naranja 3.5 psi	716	Serios daños
		Amarilla 1.0 psi	881	Roturas cristales
NE	4,17 Rojo 8.0 psi			
		Naranja 3.5 psi	709	Serios daños
		Amarilla 1.0 psi	862	Roturas cristales
ENE	4,69	Rojo 8.0 psi		
		Naranja 3.5 psi	640	Serios daños

		Amarilla 1.0 psi	788	Roturas cristales
Е	4,26	Rojo 8.0 psi		
		Naranja 3.5 psi	694	Serios daños
		Amarilla 1.0 psi	848	Roturas cristales
ESE	3,97	Rojo 8.0 psi		
		Naranja 3.5 psi	719	Serios daños
		Amarilla 1.0 psi	892	Roturas cristales
SE	3,53	Rojo 8.0 psi		
		Naranja 3.5 psi	731	Serios daños
		Amarilla 1.0 psi	969	Roturas cristales
SSE	3,03	Rojo 8.0 psi		
		Naranja 3.5 psi	732	Serios daños
		Amarilla 1.0 psi	980	Roturas cristales
S	2,94	Rojo 8.0 psi		
		Naranja 3.5 psi	754	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
SSW	2,78	Rojo 8.0 psi		
		Naranja 3.5 psi	762	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
SW	2,42	Rojo 8.0 psi		
		Naranja 3.5 psi	783	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
WSW	2,33	Rojo 8.0 psi		
		Naranja 3.5 psi	792	Serios daños
		Amarilla 1.0 psi	1200	Roturas cristales
W	2,75	Rojo 8.0 psi		
		Naranja 3.5 psi	764	Serios daños
		Amarilla 1.0 psi	1100	Roturas cristales
WNW	3,33	Rojo 8.0 psi		
		Naranja 3.5 psi	737	Serios daños
		Amarilla 1.0 psi	1000	Roturas cristales
NW	3,47	Rojo 8.0 psi		
		Naranja 3.5 psi	732	Serios daños
		Amarilla 1.0 psi	980	Roturas cristales
NNW	3,72	Rojo 8.0 psi		
		Naranja 3.5 psi	726	Serios daños
		Amarilla 1.0 psi	935	Roturas cristales

Anexo. 7: tabla que muestra el alcance del área de una nube que explota en presencia de un detonante fuerte. Gasolina en los mese del año.

Temperatur	a(°C)	26.15		
Nubosidad		4	GASOLINA-ENERO	
Humedad (9	%)	78		
Dirección	Vel.	Conc.	Largo (m)	Afectación
del Viento	Media del	$(mg/m^3)$		de locales interiores
	Viento	(ppm)		
	(m/s)			
N	3,47	Rojo 8.0 psi	589	Destrucción de estructuras
		Naranja 3.5 psi	774	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	495	Destrucción de estructuras
		Naranja 3.5 psi	670	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NE	4,17	Rojo 8.0 psi	488	Destrucción de estructuras
		Naranja 3.5 psi	661	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	446	Destrucción de estructuras
		Naranja 3.5 psi	608	Serios daños a las estructuras

		Amarilla 1.0 psi	1200	Roturas de cristales
Е	4,26	Rojo 8.0 psi	481	Destrucción de estructuras
		Naranja 3.5 psi	652	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	507	Destrucción de estructuras
		Naranja 3.5 psi	684	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SE	3,53	Rojo 8.0 psi	581	Destrucción de estructuras
		Naranja 3.5 psi	764	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	581	Destrucción de estructuras
		Naranja 3.5 psi	764	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
S	2,94	Rojo 8.0 psi	814	Destrucción de estructuras
		Naranja 3.5 psi	1000	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	841	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
SW	2,42	Rojo 8.0 psi	906	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	918	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
W	2,75	Rojo 8.0 psi	846	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	606	Destrucción de estructuras
		Naranja 3.5 psi	795	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NW	3,47	Rojo 8.0 psi	589	Destrucción de estructuras
		Naranja 3.5 psi	774	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	861	Destrucción de estructuras
	ĺ	Naranja 3.5 psi	739	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-FEBRERO	
Humedad (%	<b>%</b> )	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	458	Destrucción de estructuras
		Naranja 3.5 psi	636	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	409	Destrucción de estructuras
		Naranja 3.5 psi	574	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NE	4,17	Rojo 8.0 psi	403	Destrucción de estructuras
		Naranja 3.5 psi	567	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	370	Destrucción de estructuras
		Naranja 3.5 psi	525	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
		Rojo 8.0 psi	396	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	558	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	416	Destrucción de estructuras
		Naranja 3.5 psi	582	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
SE	3,53	Rojo 8.0 psi	450	Destrucción de estructuras
		Naranja 3.5 psi	626	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	454	Destrucción de estructuras
		Naranja 3.5 psi	631	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
S	2,94	Rojo 8.0 psi	501	Destrucción de estructuras
		Naranja 3.5 psi	678	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	515	Destrucción de estructuras
		Naranja 3.5 psi	695	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SW	2,42	Rojo 8.0 psi	564	Destrucción de estructuras
		Naranja 3.5 psi	756	Serios daños a las estructuras
		Amarilla 1.0 psi	115	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	577	Destrucción de estructuras
		Naranja 3.5 psi	773	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
W	2,75	Rojo 8.0 psi	515	Destrucción de estructuras
		Naranja 3.5 psi	695	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	465	Destrucción de estructuras
		Naranja 3.5 psi	642	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NW	3,47	Rojo 8.0 psi	449	Destrucción de estructuras
		Naranja 3.5 psi	623	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	430	Destrucción de estructuras
		Naranja 3.5 psi	600	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-MARZO	
Humedad (%	<u>(0)</u>	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	636	Destrucción de estructuras
		Naranja 3.5 psi	801	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	521	Destrucción de estructuras
		Naranja 3.5 psi	703	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NE	4,17	Rojo 8.0 psi	514	Destrucción de estructuras
		Naranja 3.5 psi	694	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	482	Destrucción de estructuras
		Naranja 3.5 psi	656	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
		Rojo 8.0 psi	507	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	685	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	563	Destrucción de estructuras
		Naranja 3.5 psi	742	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SE	3,53	Rojo 8.0 psi	604	Destrucción de estructuras
		Naranja 3.5 psi	793	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	611	Destrucción de estructuras
		Naranja 3.5 psi	801	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
S	2,94	Rojo 8.0 psi	837	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	860	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	2000	Roturas de cristales
SW	2,42	Rojo 8.0 psi	917	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	938	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
W	2,75	Rojo 8.0 psi	864	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	2000	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	839	Destrucción de estructuras
		Naranja 3.5 psi	994	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NW	3,47	Rojo 8.0 psi	825	Destrucción de estructuras
		Naranja 3.5 psi	968	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	547	Destrucción de estructuras
		Naranja 3.5 psi	646	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-	ABRIL
Humedad (%	<b>%</b> )	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	831	Destrucción de estructuras
		Naranja 3.5 psi	975	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	770	Destrucción de estructuras
		Naranja 3.5 psi	871	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NE	4,17	Rojo 8.0 psi	761	Destrucción de estructuras
		Naranja 3.5 psi	857	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	690	Destrucción de estructuras
		Naranja 3.5 psi	785	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
		Rojo 8.0 psi	737	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	840	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	783	Destrucción de estructuras
		Naranja 3.5 psi	891	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SE	3,53	Rojo 8.0 psi	487	Destrucción de estructuras
		Naranja 3.5 psi	610	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	493	Destrucción de estructuras
		Naranja 3.5 psi	620	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
S	2,94	Rojo 8.0 psi	559	Destrucción de estructuras
		Naranja 3.5 psi	698	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	370	Destrucción de estructuras
		Naranja 3.5 psi	477	Serios daños a las estructuras
		Amarilla 1.0 psi	923	Roturas de cristales
SW	2,42	Rojo 8.0 psi	625	Destrucción de estructuras
		Naranja 3.5 psi	792	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	635	Destrucción de estructuras
		Naranja 3.5 psi	809	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
W	2,75	Rojo 8.0 psi	586	Destrucción de estructuras
		Naranja 3.5 psi	736	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	513	Destrucción de estructuras
		Naranja 3.5 psi	616	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NW	3,47	Rojo 8.0 psi	497	Destrucción de estructuras
		Naranja 3.5 psi	624	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	462	Destrucción de estructuras
		Naranja 3.5 psi	586	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-MAYO	
Humedad (%	<u>(0)</u>	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	499	Destrucción de estructuras
		Naranja 3.5 psi	626	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	468	Destrucción de estructuras
		Naranja 3.5 psi	580	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
NE	4,17	Rojo 8.0 psi	463	Destrucción de estructuras
		Naranja 3.5 psi	571	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	391	Destrucción de estructuras
		Naranja 3.5 psi	484	Serios daños a las estructuras
		Amarilla 1.0 psi	996	Roturas de cristales
		Rojo 8.0 psi	455	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	555	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	476	Destrucción de estructuras
		Naranja 3.5 psi	592	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
SE	3,53	Rojo 8.0 psi	491	Destrucción de estructuras
		Naranja 3.5 psi	615	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	498	Destrucción de estructuras
		Naranja 3.5 psi	624	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
S	2,94	Rojo 8.0 psi	563	Destrucción de estructuras
		Naranja 3.5 psi	702	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	554	Destrucción de estructuras
		Naranja 3.5 psi	732	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SW	2,42	Rojo 8.0 psi	631	Destrucción de estructuras
		Naranja 3.5 psi	800	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	644	Destrucción de estructuras
		Naranja 3.5 psi	820	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
W	2,75	Rojo 8.0 psi	588	Destrucción de estructuras
		Naranja 3.5 psi	738	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	514	Destrucción de estructuras
		Naranja 3.5 psi	647	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NW	3,47	Rojo 8.0 psi	498	Destrucción de estructuras
		Naranja 3.5 psi	625	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	464	Destrucción de estructuras
		Naranja 3.5 psi	588	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-	JUNIO
Humedad (%	<b>%</b> )	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	485	Destrucción de estructuras
		Naranja 3.5 psi	670	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	448	Destrucción de estructuras
		Naranja 3.5 psi	622	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NE	4,17	Rojo 8.0 psi	442	Destrucción de estructuras
		Naranja 3.5 psi	615	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	412	Destrucción de estructuras
		Naranja 3.5 psi	576	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
		Rojo 8.0 psi	434	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	606	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	453	Destrucción de estructuras
		Naranja 3.5 psi	629	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SE	3,53	Rojo 8.0 psi	482	Destrucción de estructuras
		Naranja 3.5 psi	666	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	487	Destrucción de estructuras
		Naranja 3.5 psi	672	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
S	2,94	Rojo 8.0 psi	565	Destrucción de estructuras
		Naranja 3.5 psi	756	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	583	Destrucción de estructuras
		Naranja 3.5 psi	778	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SW	2,42	Rojo 8.0 psi	635	Destrucción de estructuras
		Naranja 3.5 psi	843	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	650	Destrucción de estructuras
		Naranja 3.5 psi	861	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
W	2,75	Rojo 8.0 psi	587	Destrucción de estructuras
		Naranja 3.5 psi	783	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	499	Destrucción de estructuras
		Naranja 3.5 psi	688	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NW	3,47	Rojo 8.0 psi	488	Destrucción de estructuras
		Naranja 3.5 psi	673	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	471	Destrucción de estructuras
		Naranja 3.5 psi	652	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales

Temperatura(°C)		26.15	GASOLINA-JULIO	
Nubosidad		4		
Humedad (%	<b>%</b> )	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	491	Destrucción de estructuras
		Naranja 3.5 psi	678	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	452	Destrucción de estructuras
		Naranja 3.5 psi	628	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NE	4,17	Rojo 8.0 psi	449	Destrucción de estructuras
		Naranja 3.5 psi	624	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	419	Destrucción de estructuras
		Naranja 3.5 psi	587	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
		Rojo 8.0 psi	439	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	611	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	457	Destrucción de estructuras
		Naranja 3.5 psi	635	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SE	3,53	Rojo 8.0 psi	485	Destrucción de estructuras
		Naranja 3.5 psi	669	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	491	Destrucción de estructuras
		Naranja 3.5 psi	677	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
S	2,94	Rojo 8.0 psi	565	Destrucción de estructuras
		Naranja 3.5 psi	755	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	581	Destrucción de estructuras
		Naranja 3.5 psi	776	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SW	2,42	Rojo 8.0 psi	633	Destrucción de estructuras
		Naranja 3.5 psi	841	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	652	Destrucción de estructuras
		Naranja 3.5 psi	862	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
W	2,75	Rojo 8.0 psi	584	Destrucción de estructuras
		Naranja 3.5 psi	779	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	496	Destrucción de estructuras
		Naranja 3.5 psi	684	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NW	3,47	Rojo 8.0 psi	487	Destrucción de estructuras
		Naranja 3.5 psi	672	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	471	Destrucción de estructuras
		Naranja 3.5 psi	651	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales

Temperatura(°C)		26.15	GASOLINA-AGOSTO	
Nubosidad		4		
Humedad (%	<u>(6)</u>	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	303	Destrucción de estructuras
		Naranja 3.5 psi	404	Serios daños a las estructuras
		Amarilla 1.0 psi	839	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	265	Destrucción de estructuras
		Naranja 3.5 psi	361	Serios daños a las estructuras
		Amarilla 1.0 psi	761	Roturas de cristales
NE	4,17	Rojo 8.0 psi	260	Destrucción de estructuras
		Naranja 3.5 psi	355	Serios daños a las estructuras
		Amarilla 1.0 psi	751	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	254	Destrucción de estructuras
		Naranja 3.5 psi	328	Serios daños a las estructuras
		Amarilla 1.0 psi	701	Roturas de cristales
		Rojo 8.0 psi	257	Destrucción de estructuras

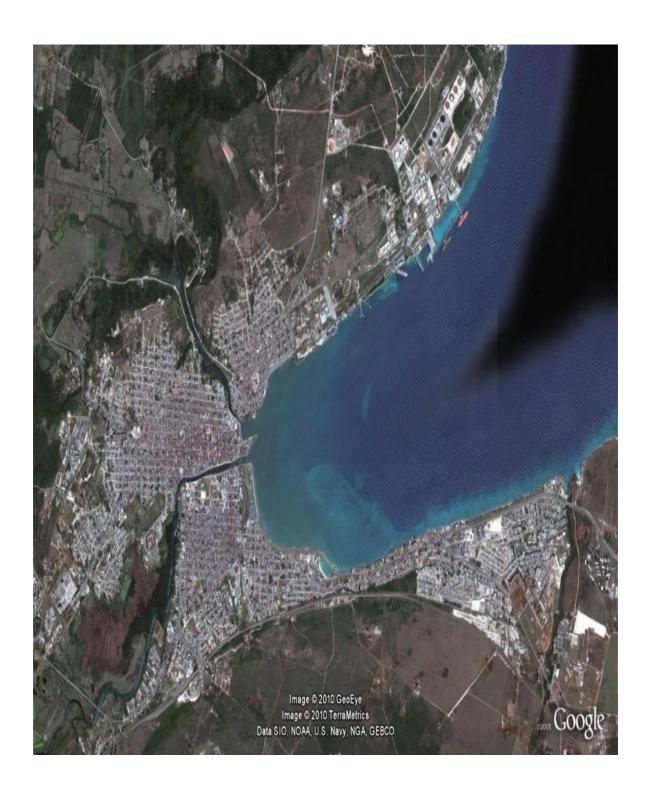
Е	4,26	Naranja 3.5 psi	351	Serios daños a las estructuras
		Amarilla 1.0 psi	741	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	270	Destrucción de estructuras
		Naranja 3.5 psi	368	Serios daños a las estructuras
		Amarilla 1.0 psi	774	Roturas de cristales
SE	3,53	Rojo 8.0 psi	299	Destrucción de estructuras
		Naranja 3.5 psi	399	Serios daños a las estructuras
		Amarilla 1.0 psi	831	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	303	Destrucción de estructuras
		Naranja 3.5 psi	404	Serios daños a las estructuras
		Amarilla 1.0 psi	839	Roturas de cristales
S	2,94	Rojo 8.0 psi	348	Destrucción de estructuras
		Naranja 3.5 psi	451	Serios daños a las estructuras
		Amarilla 1.0 psi	925	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	359	Destrucción de estructuras
		Naranja 3.5 psi	468	Serios daños a las estructuras
		Amarilla 1.0 psi	957	Roturas de cristales
SW	2,42	Rojo 8.0 psi	609	Destrucción de estructuras
		Naranja 3.5 psi	813	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	425	Destrucción de estructuras
		Naranja 3.5 psi	554	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
W	2,75	Rojo 8.0 psi	559	Destrucción de estructuras
		Naranja 3.5 psi	753	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	312	Destrucción de estructuras
		Naranja 3.5 psi	415	Serios daños a las estructuras
		Amarilla 1.0 psi	859	Roturas de cristales
NW	3,47	Rojo 8.0 psi	468	Destrucción de estructuras
		Naranja 3.5 psi	650	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	289	Destrucción de estructuras
		Naranja 3.5 psi	385	Serios daños a las estructuras
		Amarilla 1.0 psi	804	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-SEPTIEMBRE	
Humedad (%	<u>(0)</u>	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	298	Destrucción de estructuras
		Naranja 3.5 psi	399	Serios daños a las estructuras
		Amarilla 1.0 psi	829	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	262	Destrucción de estructuras
		Naranja 3.5 psi	356	Serios daños a las estructuras
		Amarilla 1.0 psi	752	Roturas de cristales
NE	4,17	Rojo 8.0 psi	256	Destrucción de estructuras
		Naranja 3.5 psi	352	Serios daños a las estructuras
		Amarilla 1.0 psi	744	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	228	Destrucción de estructuras
		Naranja 3.5 psi	321	Serios daños a las estructuras
		Amarilla 1.0 psi	691	Roturas de cristales
		Rojo 8.0 psi	255	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	345	Serios daños a las estructuras
		Amarilla 1.0 psi	732	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	265	Destrucción de estructuras
		Naranja 3.5 psi	365	Serios daños a las estructuras
		Amarilla 1.0 psi	766	Roturas de cristales
SE	3,53	Rojo 8.0 psi	295	Destrucción de estructuras
		Naranja 3.5 psi	394	Serios daños a las estructuras
		Amarilla 1.0 psi	810	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	298	Destrucción de estructuras
		Naranja 3.5 psi	399	Serios daños a las estructuras
		Amarilla 1.0 psi	829	Roturas de cristales
S	2,94	Rojo 8.0 psi	339	Destrucción de estructuras
		Naranja 3.5 psi	446	Serios daños a las estructuras
		Amarilla 1.0 psi	914	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	286	Destrucción de estructuras
		Naranja 3.5 psi	380	Serios daños a las estructuras
		Amarilla 1.0 psi	795	Roturas de cristales
SW	2,42	Rojo 8.0 psi	410	Destrucción de estructuras
		Naranja 3.5 psi	532	Serios daños a las estructuras
		Amarilla 1.0 psi	1000	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	420	Destrucción de estructuras
		Naranja 3.5 psi	547	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
W	2,75	Rojo 8.0 psi	356	Destrucción de estructuras
		Naranja 3.5 psi	465	Serios daños a las estructuras
		Amarilla 1.0 psi	952	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	307	Destrucción de estructuras
		Naranja 3.5 psi	410	Serios daños a las estructuras
		Amarilla 1.0 psi	849	Roturas de cristales
NW	3,47	Rojo 8.0 psi	298	Destrucción de estructuras
		Naranja 3.5 psi	399	Serios daños a las estructuras
		Amarilla 1.0 psi	829	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	286	Destrucción de estructuras
		Naranja 3.5 psi	380	Serios daños a las estructuras
		Amarilla 1.0 psi	795	Roturas de cristales

Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-OCTUBRE	
Humedad (%	<b>%</b> )	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	489	Destrucción de estructuras
		Naranja 3.5 psi	613	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	460	Destrucción de estructuras
		Naranja 3.5 psi	570	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
NE	4,17	Rojo 8.0 psi	454	Destrucción de estructuras
		Naranja 3.5 psi	560	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	383	Destrucción de estructuras
		Naranja 3.5 psi	473	Serios daños a las estructuras
		Amarilla 1.0 psi	979	Roturas de cristales
		Rojo 8.0 psi	438	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	551	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	468	Destrucción de estructuras
		Naranja 3.5 psi	583	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
SE	3,53	Rojo 8.0 psi	821	Destrucción de estructuras
		Naranja 3.5 psi	958	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	826	Destrucción de estructuras
		Naranja 3.5 psi	969	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
S	2,94	Rojo 8.0 psi	879	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1800	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	896	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
SW	2,42	Rojo 8.0 psi	935	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	948	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
W	2,75	Rojo 8.0 psi	899	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	839	Destrucción de estructuras
		Naranja 3.5 psi	995	Serios daños a las estructuras
		Amarilla 1.0 psi	700	Roturas de cristales
NW	3,47	Rojo 8.0 psi	826	Destrucción de estructuras
		Naranja 3.5 psi	969	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	803	Destrucción de estructuras
		Naranja 3.5 psi	925	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales


Temperatura(°C)		26.15		
Nubosidad		4	GASOLINA-NOVIEMBRE	
Humedad (%	%)	78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	489	Destrucción de estructuras
		Naranja 3.5 psi	613	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	459	Destrucción de estructuras
		Naranja 3.5 psi	569	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
NE	4,17	Rojo 8.0 psi	454	Destrucción de estructuras
		Naranja 3.5 psi	560	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	382	Destrucción de estructuras
		Naranja 3.5 psi	473	Serios daños a las estructuras
		Amarilla 1.0 psi	978	Roturas de cristales
		Rojo 8.0 psi	437	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	550	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	467	Destrucción de estructuras
		Naranja 3.5 psi	582	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales
SE	3,53	Rojo 8.0 psi	482	Destrucción de estructuras
		Naranja 3.5 psi	603	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	488	Destrucción de estructuras
		Naranja 3.5 psi	612	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
S	2,94	Rojo 8.0 psi	552	Destrucción de estructuras
		Naranja 3.5 psi	689	Serios daños a las estructuras
		Amarilla 1.0 psi	1300	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	572	Destrucción de estructuras
		Naranja 3.5 psi	7800	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
SW	2,42	Rojo 8.0 psi	610	Destrucción de estructuras
		Naranja 3.5 psi	772	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	616	Destrucción de estructuras
		Naranja 3.5 psi	783	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
W	2,75	Rojo 8.0 psi	575	Destrucción de estructuras
		Naranja 3.5 psi	722	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	503	Destrucción de estructuras
		Naranja 3.5 psi	633	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NW	3,47	Rojo 8.0 psi	487	Destrucción de estructuras
		Naranja 3.5 psi	611	Serios daños a las estructuras
		Amarilla 1.0 psi	1200	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	453	Destrucción de estructuras
		Naranja 3.5 psi	575	Serios daños a las estructuras
		Amarilla 1.0 psi	1100	Roturas de cristales

Temperatura(°C)		26.15	GASOLINA-DICIEMBRE	
Nubosidad		4		
Humedad (%)		78		
Dirección	Vel Media	Conc	Largo (m)	Afectación
del Viento	del Viento	$(mg/m^3)$		de locales interiores
	(m/s)	(ppm)		
N	3,47	Rojo 8.0 psi	824	Destrucción de estructuras
		Naranja 3.5 psi	966	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NNE	4,08	Rojo 8.0 psi	767	Destrucción de estructuras
		Naranja 3.5 psi	870	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
NE	4,17	Rojo 8.0 psi	754	Destrucción de estructuras
		Naranja 3.5 psi	849	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
ENE	4,69	Rojo 8.0 psi	684	Destrucción de estructuras
		Naranja 3.5 psi	778	Serios daños a las estructuras
		Amarilla 1.0 psi	1400	Roturas de cristales
		Rojo 8.0 psi	734	Destrucción de estructuras

Е	4,26	Naranja 3.5 psi	836	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
ESE	3,97	Rojo 8.0 psi	775	Destrucción de estructuras
		Naranja 3.5 psi	881	Serios daños a las estructuras
		Amarilla 1.0 psi	1500	Roturas de cristales
SE	3,53	Rojo 8.0 psi	819	Destrucción de estructuras
		Naranja 3.5 psi	956	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales
SSE	3,03	Rojo 8.0 psi	824	Destrucción de estructuras
		Naranja 3.5 psi	966	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
S	2,94	Rojo 8.0 psi	877	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1800	Roturas de cristales
SSW	2,78	Rojo 8.0 psi	893	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
SW	2,42	Rojo 8.0 psi	932	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2000	Roturas de cristales
WSW	2,33	Rojo 8.0 psi	944	Destrucción de estructuras
		Naranja 3.5 psi	1200	Serios daños a las estructuras
		Amarilla 1.0 psi	2100	Roturas de cristales
W	2,75	Rojo 8.0 psi	896	Destrucción de estructuras
		Naranja 3.5 psi	1100	Serios daños a las estructuras
		Amarilla 1.0 psi	1900	Roturas de cristales
WNW	3,33	Rojo 8.0 psi	837	Destrucción de estructuras
		Naranja 3.5 psi	992	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NW	3,47	Rojo 8.0 psi	824	Destrucción de estructuras
		Naranja 3.5 psi	966	Serios daños a las estructuras
		Amarilla 1.0 psi	1700	Roturas de cristales
NNW	3,72	Rojo 8.0 psi	801	Destrucción de estructuras
		Naranja 3.5 psi	923	Serios daños a las estructuras
		Amarilla 1.0 psi	1600	Roturas de cristales

Anexo 8. Vista satelital de la zona objeto de estudio

